Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review

High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist’s perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.

[1]  Farid E Ahmed,et al.  Microarray RNA transcriptional profiling: Part II. Analytical considerations and annotation , 2006, Expert review of molecular diagnostics.

[2]  Graziano Pesole,et al.  On the statistical assessment of classifiers using DNA microarray data , 2006, BMC Bioinformatics.

[3]  Eric D Wieben,et al.  Primer on medical genomics. Part III: Microarray experiments and data analysis. , 2002, Mayo Clinic proceedings.

[4]  George Karypis,et al.  Data clustering in life sciences , 2005, Molecular biotechnology.

[5]  Markus Ringnér,et al.  What is principal component analysis? , 2008, Nature Biotechnology.

[6]  Heather J. Ruskin,et al.  Techniques for clustering gene expression data , 2008, Comput. Biol. Medicine.

[7]  W. Baumgärtner,et al.  Distinct Spatio‐Temporal Extracellular Matrix Accumulation within Demyelinated Spinal Cord Lesions in Theiler's Murine Encephalomyelitis , 2012, Brain pathology.

[8]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[9]  R A Irizarry,et al.  On the utility of pooling biological samples in microarray experiments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[11]  Mark Reimers,et al.  Statistical Analysis of Microarray Data , 2005, Addiction biology.

[12]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[13]  Kimberly R. Kukurba,et al.  RNA Sequencing and Analysis. , 2015, Cold Spring Harbor protocols.

[14]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[15]  Beate Sick,et al.  Quality assessment of Affymetrix GeneChip data. , 2006, Omics : a journal of integrative biology.

[16]  S. Le,et al.  Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line , 2010, Molecular systems biology.

[17]  W. Baumgärtner,et al.  Transcriptional Changes in Canine Distemper Virus-Induced Demyelinating Leukoencephalitis Favor a Biphasic Mode of Demyelination , 2014, PloS one.

[18]  Jim F Huggett,et al.  Considerations for digital PCR as an accurate molecular diagnostic tool. , 2015, Clinical chemistry.

[19]  Rosane Minghim,et al.  InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams , 2015, BMC Bioinformatics.

[20]  F. Mutinelli,et al.  Transcriptomic analysis identified up-regulation of a solute carrier transporter and UDP glucuronosyltransferases in dogs with aggressive cutaneous mast cell tumours. , 2016, Veterinary journal.

[21]  C. Campagnoni,et al.  Structure and developmental regulation of Golli-mbp, a 105-kilobase gene that encompasses the myelin basic protein gene and is expressed in cells in the oligodendrocyte lineage in the brain. , 1993, The Journal of biological chemistry.

[22]  I. Yang,et al.  Multi-platform, multi-site, microarray-based human tumor classification. , 2004, The American journal of pathology.

[23]  M. J. Davis,et al.  Annotated genes and nonannotated genomes: cross‐species use of Gene Ontology in ecology and evolution research , 2013, Molecular ecology.

[24]  Farid E Ahmed,et al.  Microarray RNA transcriptional profiling: Part I. Platforms, experimental design and standardization , 2006, Expert review of molecular diagnostics.

[25]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[26]  U. Deschl,et al.  CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro , 2014, Journal of Neural Transmission.

[27]  Kevin Dobbin,et al.  Statistical Design of Reverse Dye Microarrays , 2003, Bioinform..

[28]  Katrin Hoffmann,et al.  Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR – how well do they correlate? , 2005, BMC Genomics.

[29]  Brian P. Brunk,et al.  Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM) , 2011, Bioinform..

[30]  J. Kleinjans,et al.  Development of novel tools for the in vitro investigation of drug-induced liver injury , 2015, Expert opinion on drug metabolism & toxicology.

[31]  Carole L Yauk,et al.  Comprehensive comparison of six microarray technologies. , 2004, Nucleic acids research.

[32]  Alexander R. Pico,et al.  WikiPathways: Pathway Editing for the People , 2008, PLoS biology.

[33]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[34]  M. Zamani-Ahmadmahmudi Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach , 2016, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[35]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[36]  B. Tang,et al.  AMIGO is expressed in multiple brain cell types and may regulate dendritic growth and neuronal survival , 2012, Journal of cellular physiology.

[37]  C. Ponting,et al.  Sequencing depth and coverage: key considerations in genomic analyses , 2014, Nature Reviews Genetics.

[38]  Susmita Datta,et al.  Evaluation of clustering algorithms for gene expression data , 2006, BMC Bioinformatics.

[39]  Maria Keays,et al.  ArrayExpress update—trends in database growth and links to data analysis tools , 2012, Nucleic Acids Res..

[40]  David M. Rocke,et al.  Transformation and normalization of oligonucleotide microarray data , 2003, Bioinform..

[41]  R. McIndoe,et al.  Microarray experimental design: power and sample size considerations. , 2003, Physiological genomics.

[42]  X. Zhong,et al.  The Impact of Different Preservation Conditions and Freezing-Thawing Cycles on Quality of RNA, DNA, and Proteins in Cancer Tissue. , 2015, Biopreservation and biobanking.

[43]  Alfonso Valencia,et al.  iHOP web services , 2007, Nucleic Acids Res..

[44]  C. Perou,et al.  RNA expression analysis of formalin-fixed paraffin-embedded tumors , 2007, Laboratory Investigation.

[45]  T. Dallman,et al.  Performance comparison of benchtop high-throughput sequencing platforms , 2012, Nature Biotechnology.

[46]  Catalin C. Barbacioru,et al.  The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies , 2008, BMC Bioinformatics.

[47]  Martin Vingron,et al.  Normalization and quantification of differential expression in gene expression microarrays , 2006, Briefings Bioinform..

[48]  Afzal R Mohammed,et al.  Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. , 2013, Therapeutic delivery.

[49]  Hedi Peterson,et al.  g:Profiler—a web-based toolset for functional profiling of gene lists from large-scale experiments , 2007, Nucleic Acids Res..

[50]  Richard Simon,et al.  A random variance model for detection of differential gene expression in small microarray experiments , 2003, Bioinform..

[51]  Simona Soverini,et al.  Comparison of Next-Generation Sequencing Systems , 2013 .

[52]  Hongfang Liu,et al.  BMC Bioinformatics BioMed Central Methodology article VennMaster: Area-proportional Euler diagrams for functional GO , 2008 .

[53]  William Stafford Noble,et al.  The effect of replication on gene expression microarray experiments , 2003, Bioinform..

[54]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[55]  Joaquín Dopazo,et al.  BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments , 2005, Nucleic Acids Res..

[56]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[57]  John Okyere,et al.  How to decide? Different methods of calculating gene expression from short oligonucleotide array data will give different results , 2006, BMC Bioinformatics.

[58]  M. Kreutzer,et al.  Limited remyelination in Theiler's murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)‐positive putative oligodendroglial progenitor cells , 2008, Neuropathology and applied neurobiology.

[59]  F. Medeiros,et al.  Tissue handling for genome-wide expression analysis: a review of the issues, evidence, and opportunities. , 2007, Archives of pathology & laboratory medicine.

[60]  Günter P. Wagner,et al.  Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples , 2012, Theory in Biosciences.

[61]  Catalin C. Barbacioru,et al.  Evaluation of DNA microarray results with quantitative gene expression platforms , 2006, Nature Biotechnology.

[62]  Jeffrey T. Leek,et al.  EDGE: extraction and analysis of differential gene expression , 2006, Bioinform..

[63]  M. Kummerfeld,et al.  Axonopathy Is Associated with Complex Axonal Transport Defects in a Model of Multiple Sclerosis , 2012, Brain pathology.

[64]  K. Lindblad-Toh,et al.  Molecular Profiling Reveals Prognostically Significant Subtypes of Canine Lymphoma , 2013, Veterinary pathology.

[65]  W. Pan,et al.  How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach , 2002, Genome Biology.

[66]  M. Severgnini,et al.  Transcriptome amplification methods in gene expression profiling , 2006, Expert review of molecular diagnostics.

[67]  R. Machida,et al.  Four Methods of Preparing mRNA 5′ End Libraries Using the Illumina Sequencing Platform , 2014, PloS one.

[68]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[69]  Gary Hardiman,et al.  Microarray platforms--comparisons and contrasts. , 2004, Pharmacogenomics.

[70]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[71]  A. Motsinger-Reif,et al.  Gene selection and cancer type classification of diffuse large-B-cell lymphoma using a bivariate mixture model for two-species data , 2013, Human Genomics.

[72]  Huaiyu Mi,et al.  PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. , 2009, Methods in molecular biology.

[73]  Peter M. Rice,et al.  The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants , 2009, Nucleic acids research.

[74]  W. Alkema,et al.  BioVenn – a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams , 2008, BMC Genomics.

[75]  Russell S. Thomas,et al.  Expression profiling in canine osteosarcoma: identification of biomarkers and pathways associated with outcome , 2010, BMC Cancer.

[76]  J. Bourdon,et al.  p53 Isoforms: An Intracellular Microprocessor? , 2011, Genes & cancer.

[77]  T Boes,et al.  Normalization for Affymetrix GeneChips , 2005, Methods of Information in Medicine.

[78]  Bing Zhang,et al.  WebGestalt: an integrated system for exploring gene sets in various biological contexts , 2005, Nucleic Acids Res..

[79]  G. Hostetter,et al.  Veterinary and Human Biobanking Practices , 2014, Veterinary pathology.

[80]  W. Baumgärtner,et al.  Transcriptional analysis of glial cell differentiation in the postnatal murine spinal cord , 2015, International Journal of Developmental Neuroscience.

[81]  R. Stoyanova,et al.  Successful application of microarray technology to microdissected formalin-fixed, paraffin-embedded tissue. , 2007, The Journal of molecular diagnostics : JMD.

[82]  M. Beer,et al.  Schmallenberg Virus as Possible Ancestor of Shamonda Virus , 2012, Emerging infectious diseases.

[83]  John Quackenbush,et al.  Microarray gene expression data analysis - a beginner's guide , 2003 .

[84]  J. Segalés,et al.  Microarray analysis of mediastinal lymph node of pigs naturally affected by postweaning multisystemic wasting syndrome. , 2012, Virus research.

[85]  Jing Wang,et al.  WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 , 2013, Nucleic Acids Res..

[86]  Erick Suárez,et al.  Microarray data analysis for differential expression: a tutorial. , 2009, Puerto Rico health sciences journal.

[87]  Emma Laing,et al.  RankProdIt: A web-interactive Rank Products analysis tool , 2010, BMC Research Notes.

[88]  Daniel R. Salomon,et al.  Strategies for aggregating gene expression data: The collapseRows R function , 2011, BMC Bioinformatics.

[89]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[90]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[91]  James J. Chen,et al.  Power and sample size estimation in microarray studies , 2010, BMC Bioinformatics.

[92]  Sheng Li,et al.  Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study , 2014, Nature Biotechnology.

[93]  Hui Yu,et al.  Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data , 2007, BMC Bioinformatics.

[94]  Luis Serrano,et al.  Correlation of mRNA and protein in complex biological samples , 2009, FEBS letters.

[95]  Lu Zhang,et al.  Large scale real-time PCR validation on gene expression measurements from two commercial long-oligonucleotide microarrays , 2006, BMC Genomics.

[96]  R. Braun Systems analysis of high-throughput data. , 2014, Advances in experimental medicine and biology.

[97]  P. Collins,et al.  Performance comparison of one-color and two-color platforms within the Microarray Quality Control (MAQC) project , 2006, Nature Biotechnology.

[98]  Cristina Mitrea,et al.  Methods and approaches in the topology-based analysis of biological pathways , 2013, Front. Physiol..

[99]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[100]  I. Simon,et al.  An analysis of intra array repeats: the good, the bad and the non informative , 2006, BMC Genomics.

[101]  Michael W Pfaffl,et al.  RNA integrity and the effect on the real-time qRT-PCR performance. , 2006, Molecular aspects of medicine.

[102]  Timothy F Cloughesy,et al.  The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. , 2014, Clinical biochemistry.

[103]  Jesse Gillis,et al.  Gene function analysis in complex data sets using ErmineJ , 2010, Nature Protocols.

[104]  S. Tan,et al.  DNA, RNA, and Protein Extraction: The Past and The Present , 2009, Journal of biomedicine & biotechnology.

[105]  Stuart Maudsley,et al.  VennPlex–A Novel Venn Diagram Program for Comparing and Visualizing Datasets with Differentially Regulated Datapoints , 2013, PloS one.

[106]  Piero Carninci,et al.  The devil in the details of RNA-seq , 2014, Nature Biotechnology.

[107]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[108]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[109]  M. Gerstein,et al.  Comparing protein abundance and mRNA expression levels on a genomic scale , 2003, Genome Biology.

[110]  K. Nave,et al.  STAT3 represents a molecular switch possibly inducing astroglial instead of oligodendroglial differentiation of oligodendroglial progenitor cells in Theiler's murine encephalomyelitis , 2015, Neuropathology and applied neurobiology.

[111]  P. Flicek,et al.  Consistent annotation of gene expression arrays , 2010, BMC Genomics.

[112]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[113]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[114]  R. Baron,et al.  Finding genes in the C2C12 osteogenic pathway by k-nearest-neighbor classification of expression data. , 2002, Genome research.

[115]  David P. Kreil,et al.  There is no silver bullet - a guide to low-level data transforms and normalisation methods for microarray data , 2005, Briefings Bioinform..

[116]  Joaquín Dopazo,et al.  The role of the environment in Parkinson's disease. , 1996, Nucleic Acids Res..

[117]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[118]  G. Churchill,et al.  Experimental design for gene expression microarrays. , 2001, Biostatistics.

[119]  Stanley N Cohen,et al.  Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[121]  George Stephanopoulos,et al.  Determination of minimum sample size and discriminatory expression patterns in microarray data , 2002, Bioinform..

[122]  Purvesh Khatri,et al.  Onto-Tools: new additions and improvements in 2006 , 2007, Nucleic Acids Res..

[123]  T. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2010, Nucleic Acids Res..

[124]  Cole Trapnell,et al.  Computational methods for transcriptome annotation and quantification using RNA-seq , 2011, Nature Methods.

[125]  K. Becker,et al.  Transcriptional profiling predicts overwhelming homology of schwann cells, olfactory ensheathing cells, and schwann cell‐like glia , 2014, Glia.

[126]  Jonathan R Pollack,et al.  A perspective on DNA microarrays in pathology research and practice. , 2007, The American journal of pathology.

[127]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[128]  Pierre Baldi,et al.  Cyber-T web server: differential analysis of high-throughput data , 2012, Nucleic Acids Res..

[129]  John Quackenbush Section 7: Bioinformatics: Computational Approaches to Analysis of DNA Microarray Data , 2006, Yearbook of Medical Informatics.

[130]  R. Jaksik,et al.  Calculation of reliable transcript levels of annotated genes on the basis of multiple probe-sets in Affymetrix microarrays. , 2009, Acta biochimica Polonica.

[131]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[132]  W. Baumgärtner,et al.  Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis , 2016, PloS one.

[133]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[134]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[135]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[136]  L. Lue,et al.  Characterization of RNA isolated from eighteen different human tissues: results from a rapid human autopsy program , 2016, Cell and Tissue Banking.

[137]  David A Jones,et al.  Preservation of RNA for Functional Genomic Studies: A Multidisciplinary Tumor Bank Protocol , 2001, Modern Pathology.

[138]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[139]  M. Legendre,et al.  Efficacy of RNA amplification is dependent on sequence characteristics: implications for gene expression profiling using a cDNA microarray. , 2008, Genomics.

[140]  W. Baumgärtner,et al.  Matrix metalloproteinase-12 deficiency ameliorates the clinical course and demyelination in Theiler’s murine encephalomyelitis , 2012, Acta Neuropathologica.

[141]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[142]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[143]  Xinbin Chen,et al.  Posttranscriptional regulation of p53 and its targets by RNA-binding proteins. , 2008, Current molecular medicine.

[144]  Y. Pilpel,et al.  Regulatory mechanisms and networks couple the different phases of gene expression. , 2011, Trends in genetics : TIG.

[145]  Members of the Complex Trait Consortium Standardizing global gene expression analysis between laboratories and across platforms , 2005 .

[146]  F. Pontén,et al.  Correlations between RNA and protein expression profiles in 23 human cell lines , 2009, BMC Genomics.

[147]  Vincent Piras,et al.  Is central dogma a global property of cellular information flow? , 2012, Front. Physio..

[148]  Ian B. Jeffery,et al.  Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data , 2006, BMC Bioinformatics.

[149]  Michael F. Ochs,et al.  Matrix factorisation methods applied in microarray data analysis , 2010, Int. J. Data Min. Bioinform..

[150]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[151]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[152]  W. Baumgärtner,et al.  Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis , 2009, Journal of cellular and molecular medicine.

[153]  W. Baumgärtner,et al.  Matrix Metalloproteinases and Their Inhibitors in the Developing Mouse Brain and Spinal Cord: A Reverse Transcription Quantitative Polymerase Chain Reaction Study , 2005, Developmental Neuroscience.

[154]  F. Mutinelli,et al.  Global Gene Expression Analysis of Canine Cutaneous Mast Cell Tumor: Could Molecular Profiling Be Useful for Subtype Classification and Prognostication? , 2014, PloS one.

[155]  Richard Baumgartner,et al.  Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions , 2003, Bioinform..

[156]  Stan Pounds,et al.  Estimation and control of multiple testing error rates for microarray studies , 2006, Briefings Bioinform..

[157]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[158]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[159]  Giovanni Parmigiani,et al.  Pre-processing Agilent microarray data , 2007, BMC Bioinformatics.

[160]  Andreas Rytz,et al.  The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data , 2002, BMC Bioinformatics.

[161]  T. Glenn Field guide to next‐generation DNA sequencers , 2011, Molecular ecology resources.

[162]  Gerhard Tutz,et al.  A CART-based approach to discover emerging patterns in microarray data , 2003, Bioinform..

[163]  Federico Marini,et al.  Systematically evaluating interfaces for RNA-seq analysis from a life scientist perspective , 2016, Briefings Bioinform..

[164]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[165]  Chris T. A. Evelo,et al.  User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org , 2013, Nucleic Acids Res..

[166]  David P. Kreil,et al.  The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance , 2014, Nature Biotechnology.

[167]  Ming Yi,et al.  bioDBnet: the biological database network , 2009, Bioinform..

[168]  S. Drăghici,et al.  Analysis of microarray experiments of gene expression profiling. , 2006, American journal of obstetrics and gynecology.

[169]  Mohd Saberi Mohamad,et al.  A Review of Feature Extraction Software for Microarray Gene Expression Data , 2014, BioMed research international.

[170]  W. Baumgärtner,et al.  Transcriptomic Meta-Analysis of Multiple Sclerosis and Its Experimental Models , 2014, PloS one.

[171]  S. Lutz-Bonengel,et al.  Successful RNA extraction from various human postmortem tissues , 2007, International Journal of Legal Medicine.

[172]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.

[173]  J. Bähler,et al.  Cellular and Molecular Life Sciences REVIEW RNA-seq: from technology to biology , 2022 .

[174]  J J Chen,et al.  Selection of differentially expressed genes in microarray data analysis , 2007, The Pharmacogenomics Journal.

[175]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[176]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[177]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[178]  Robert Nadon,et al.  Comparison of small n statistical tests of differential expression applied to microarrays , 2009, BMC Bioinformatics.

[179]  W. Baumgärtner,et al.  Dynamic Changes of Microglia/Macrophage M1 and M2 Polarization in Theiler's Murine Encephalomyelitis , 2015, Brain pathology.

[180]  Michal Dabrowski,et al.  Probe set filtering increases correlation between Affymetrix GeneChip and qRT-PCR expression measurements , 2010, BMC Bioinformatics.