Fréchet Distance for Uncertain Curves

In this paper we study a wide range of variants for computing the (discrete and continuous) Frechet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Frechet distance, which are the minimum and maximum Frechet distance for any realisations of the curves. We prove that both the upper and lower bound problems are NP-hard for the continuous Frechet distance in several uncertainty models, and that the upper bound problem remains hard for the discrete Frechet distance. In contrast, the lower bound (discrete and continuous) Frechet distance can be computed in polynomial time. Furthermore, we show that computing the expected discrete Frechet distance is #P-hard when the uncertainty regions are modelled as point sets or line segments. The construction also extends to show #P-hardness for computing the continuous Frechet distance when regions are modelled as point sets. On the positive side, we argue that in any constant dimension there is a FPTAS for the lower bound problem when $\Delta / \delta$ is polynomially bounded, where $\delta$ is the Frechet distance and $\Delta$ bounds the diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision problem when the regions are convex and roughly $\delta$-separated. Finally, we also study the setting with Sakoe--Chiba time bands, where we restrict the alignment between the two curves, and give polynomial-time algorithms for upper bound and expected discrete and continuous Frechet distance for uncertainty regions modelled as point sets.

[1]  Jun Luo,et al.  Tight Approximation Bounds for Connectivity with a Color-Spanning Set , 2013, ISAAC.

[2]  Pankaj K. Agarwal,et al.  Nearest-Neighbor Searching Under Uncertainty I , 2017, Discrete & Computational Geometry.

[3]  Bettina Speckmann,et al.  SETH Says: Weak Fréchet Distance is Faster, but only if it is Continuous and in One Dimension , 2019, SODA.

[4]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[5]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[6]  Maarten Löffler,et al.  Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..

[7]  Leizhen Cai,et al.  Computing Visibility Information in an Inaccurate Simple Polygon , 1997, Int. J. Comput. Geom. Appl..

[8]  Eamonn Keogh Exact Indexing of Dynamic Time Warping , 2002, VLDB.

[9]  Wolfgang Mulzer,et al.  Four Soviets Walk the Dog: Improved Bounds for Computing the Fréchet Distance , 2012, Discret. Comput. Geom..

[10]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[11]  David G. Kirkpatrick,et al.  Competitive query strategies for minimising the ply of the potential locations of moving points , 2013, SoCG '13.

[12]  Sariel Har-Peled,et al.  Jaywalking Your Dog: Computing the Fréchet Distance with Shortcuts , 2012, SIAM J. Comput..

[13]  Michael Godau,et al.  A Natural Metric for Curves - Computing the Distance for Polygonal Chains and Approximation Algorithms , 1991, STACS.

[14]  Sandip Das,et al.  Smallest Color-Spanning Object Revisited , 2009, Int. J. Comput. Geom. Appl..

[15]  Maarten Löffler,et al.  Global Curve Simplification , 2019, ESA.

[16]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..

[17]  William S. Evans,et al.  Guaranteed Voronoi Diagrams of Uncertain Sites , 2008, CCCG.

[18]  Joachim Gudmundsson,et al.  Approximating $(k,\ell)$-center clustering for curves , 2018, 1805.01547.

[19]  Matthew J. Katz,et al.  Algorithms for the Discrete Fréchet Distance Under Translation , 2020, SWAT.

[20]  A. Prasad Sistla,et al.  Querying the Uncertain Position of Moving Objects , 1997, Temporal Databases, Dagstuhl.

[21]  Binhai Zhu,et al.  Complexity and Algorithms for the Discrete Fréchet Distance Upper Bound with Imprecise Input , 2015, ArXiv.

[22]  Benjamin Raichel,et al.  Computing the Fréchet Gap Distance , 2017, Symposium on Computational Geometry.

[23]  Marvin Künnemann,et al.  Fréchet Distance Under Translation: Conditional Hardness and an Algorithm via Offline Dynamic Grid Reachability , 2019, SODA.

[24]  Jörg-Rüdiger Sack,et al.  Fréchet distance with speed limits , 2011, Comput. Geom..

[25]  Maarten Löffler,et al.  Flow Computations on Imprecise Terrains , 2011, WADS.

[26]  Bin Jiang,et al.  Probabilistic Skylines on Uncertain Data , 2007, VLDB.

[27]  Sariel Har-Peled,et al.  Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2010, Discrete & Computational Geometry.

[28]  Haim Kaplan,et al.  Computing the Discrete Fréchet Distance in Subquadratic Time , 2012, SIAM J. Comput..

[29]  Sariel Har-Peled,et al.  The fréchet distance revisited and extended , 2012, TALG.

[30]  Sariel Har-Peled,et al.  Jaywalking your dog: computing the Fréchet distance with shortcuts , 2011, SODA 2012.

[31]  Subhash Suri,et al.  On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.

[32]  Kevin Buchin,et al.  Detecting movement patterns using Brownian bridges , 2012, SIGSPATIAL/GIS.

[33]  Joachim Gudmundsson,et al.  Approximating $(k,\ell)$-center clustering for curves , 2018 .

[34]  Maarten Löffler,et al.  Removing local extrema from imprecise terrains , 2010, Comput. Geom..

[35]  Maarten Löffler,et al.  The directed Hausdorff distance between imprecise point sets , 2011, Theor. Comput. Sci..

[36]  Joseph S. B. Mitchell,et al.  Preprocessing Imprecise Points and Splitting Triangulations , 2010, SIAM J. Comput..

[37]  Maarten Löffler,et al.  Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended , 2010, Algorithmica.

[38]  Hee-Kap Ahn,et al.  Computing the Discrete FRéChet Distance with Imprecise Input , 2010, Int. J. Comput. Geom. Appl..

[39]  Maarten Löffler,et al.  Largest and Smallest Tours and Convex Hulls for Imprecise Points , 2006, SWAT.

[40]  Bettina Speckmann,et al.  Computing the Fréchet distance with shortcuts is NP-hard , 2014, Symposium on Computational Geometry.

[41]  Thomas Devogele,et al.  Optimized Discrete Fréchet Distance between trajectories , 2017, BigSpatial@SIGSPATIAL.

[42]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[43]  Maarten Löffler,et al.  Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition , 2014, J. Comput. Geom..

[44]  Maarten Löffler,et al.  Geometric Computations on Indecisive Points , 2011, WADS.

[45]  John Krumm,et al.  A survey of computational location privacy , 2009, Personal and Ubiquitous Computing.

[46]  Joachim Gudmundsson,et al.  Fast fréchet distance between curves with long edges , 2018, IWISC.

[47]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[48]  Yufei Tao,et al.  Efficient Evaluation of Probabilistic Advanced Spatial Queries on Existentially Uncertain Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[49]  Esther M. Arkin,et al.  Selecting and covering colored points , 2018, Discret. Appl. Math..

[50]  Joachim Gudmundsson,et al.  Constrained free space diagrams: a tool for trajectory analysis , 2010, Int. J. Geogr. Inf. Sci..

[51]  Maarten Löffler,et al.  Data Imprecision in Computational Geometry , 2009 .

[52]  Leonidas J. Guibas,et al.  Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, ISA.

[53]  Dieter Pfoser,et al.  Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.

[54]  Rolf Klein,et al.  Smallest Color-Spanning Objects , 2001, ESA.

[55]  M. Buchin,et al.  Discrete Fréchet Distance for Uncertain Points , 2016 .

[56]  Maarten Löffler,et al.  On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance , 2018, SoCG.