暂无分享,去创建一个
Maarten Löffler | Marcel Roeloffzen | Kevin Buchin | Benjamin Raichel | Aleksandr Popov | Chenglin Fan
[1] Jun Luo,et al. Tight Approximation Bounds for Connectivity with a Color-Spanning Set , 2013, ISAAC.
[2] Pankaj K. Agarwal,et al. Nearest-Neighbor Searching Under Uncertainty I , 2017, Discrete & Computational Geometry.
[3] Bettina Speckmann,et al. SETH Says: Weak Fréchet Distance is Faster, but only if it is Continuous and in One Dimension , 2019, SODA.
[4] S. Chiba,et al. Dynamic programming algorithm optimization for spoken word recognition , 1978 .
[5] Karl Bringmann,et al. Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[6] Maarten Löffler,et al. Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..
[7] Leizhen Cai,et al. Computing Visibility Information in an Inaccurate Simple Polygon , 1997, Int. J. Comput. Geom. Appl..
[8] Eamonn Keogh. Exact Indexing of Dynamic Time Warping , 2002, VLDB.
[9] Wolfgang Mulzer,et al. Four Soviets Walk the Dog: Improved Bounds for Computing the Fréchet Distance , 2012, Discret. Comput. Geom..
[10] Donald J. Berndt,et al. Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.
[11] David G. Kirkpatrick,et al. Competitive query strategies for minimising the ply of the potential locations of moving points , 2013, SoCG '13.
[12] Sariel Har-Peled,et al. Jaywalking Your Dog: Computing the Fréchet Distance with Shortcuts , 2012, SIAM J. Comput..
[13] Michael Godau,et al. A Natural Metric for Curves - Computing the Distance for Polygonal Chains and Approximation Algorithms , 1991, STACS.
[14] Sandip Das,et al. Smallest Color-Spanning Object Revisited , 2009, Int. J. Comput. Geom. Appl..
[15] Maarten Löffler,et al. Global Curve Simplification , 2019, ESA.
[16] Leonidas J. Guibas,et al. Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, Int. J. Comput. Geom. Appl..
[17] William S. Evans,et al. Guaranteed Voronoi Diagrams of Uncertain Sites , 2008, CCCG.
[18] Joachim Gudmundsson,et al. Approximating $(k,\ell)$-center clustering for curves , 2018, 1805.01547.
[19] Matthew J. Katz,et al. Algorithms for the Discrete Fréchet Distance Under Translation , 2020, SWAT.
[20] A. Prasad Sistla,et al. Querying the Uncertain Position of Moving Objects , 1997, Temporal Databases, Dagstuhl.
[21] Binhai Zhu,et al. Complexity and Algorithms for the Discrete Fréchet Distance Upper Bound with Imprecise Input , 2015, ArXiv.
[22] Benjamin Raichel,et al. Computing the Fréchet Gap Distance , 2017, Symposium on Computational Geometry.
[23] Marvin Künnemann,et al. Fréchet Distance Under Translation: Conditional Hardness and an Algorithm via Offline Dynamic Grid Reachability , 2019, SODA.
[24] Jörg-Rüdiger Sack,et al. Fréchet distance with speed limits , 2011, Comput. Geom..
[25] Maarten Löffler,et al. Flow Computations on Imprecise Terrains , 2011, WADS.
[26] Bin Jiang,et al. Probabilistic Skylines on Uncertain Data , 2007, VLDB.
[27] Sariel Har-Peled,et al. Approximating the Fréchet Distance for Realistic Curves in Near Linear Time , 2010, Discrete & Computational Geometry.
[28] Haim Kaplan,et al. Computing the Discrete Fréchet Distance in Subquadratic Time , 2012, SIAM J. Comput..
[29] Sariel Har-Peled,et al. The fréchet distance revisited and extended , 2012, TALG.
[30] Sariel Har-Peled,et al. Jaywalking your dog: computing the Fréchet distance with shortcuts , 2011, SODA 2012.
[31] Subhash Suri,et al. On the Most Likely Convex Hull of Uncertain Points , 2013, ESA.
[32] Kevin Buchin,et al. Detecting movement patterns using Brownian bridges , 2012, SIGSPATIAL/GIS.
[33] Joachim Gudmundsson,et al. Approximating $(k,\ell)$-center clustering for curves , 2018 .
[34] Maarten Löffler,et al. Removing local extrema from imprecise terrains , 2010, Comput. Geom..
[35] Maarten Löffler,et al. The directed Hausdorff distance between imprecise point sets , 2011, Theor. Comput. Sci..
[36] Joseph S. B. Mitchell,et al. Preprocessing Imprecise Points and Splitting Triangulations , 2010, SIAM J. Comput..
[37] Maarten Löffler,et al. Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended , 2010, Algorithmica.
[38] Hee-Kap Ahn,et al. Computing the Discrete FRéChet Distance with Imprecise Input , 2010, Int. J. Comput. Geom. Appl..
[39] Maarten Löffler,et al. Largest and Smallest Tours and Convex Hulls for Imprecise Points , 2006, SWAT.
[40] Bettina Speckmann,et al. Computing the Fréchet distance with shortcuts is NP-hard , 2014, Symposium on Computational Geometry.
[41] Thomas Devogele,et al. Optimized Discrete Fréchet Distance between trajectories , 2017, BigSpatial@SIGSPATIAL.
[42] H. Mannila,et al. Computing Discrete Fréchet Distance ∗ , 1994 .
[43] Maarten Löffler,et al. Unions of Onions: Preprocessing Imprecise Points for Fast Onion Decomposition , 2014, J. Comput. Geom..
[44] Maarten Löffler,et al. Geometric Computations on Indecisive Points , 2011, WADS.
[45] John Krumm,et al. A survey of computational location privacy , 2009, Personal and Ubiquitous Computing.
[46] Joachim Gudmundsson,et al. Fast fréchet distance between curves with long edges , 2018, IWISC.
[47] Helmut Alt,et al. Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..
[48] Yufei Tao,et al. Efficient Evaluation of Probabilistic Advanced Spatial Queries on Existentially Uncertain Data , 2009, IEEE Transactions on Knowledge and Data Engineering.
[49] Esther M. Arkin,et al. Selecting and covering colored points , 2018, Discret. Appl. Math..
[50] Joachim Gudmundsson,et al. Constrained free space diagrams: a tool for trajectory analysis , 2010, Int. J. Geogr. Inf. Sci..
[51] Maarten Löffler,et al. Data Imprecision in Computational Geometry , 2009 .
[52] Leonidas J. Guibas,et al. Approximating Polygons and Subdivisions with Minimum Link Paths , 1991, ISA.
[53] Dieter Pfoser,et al. Capturing the Uncertainty of Moving-Object Representations , 1999, SSD.
[54] Rolf Klein,et al. Smallest Color-Spanning Objects , 2001, ESA.
[55] M. Buchin,et al. Discrete Fréchet Distance for Uncertain Points , 2016 .
[56] Maarten Löffler,et al. On Optimal Polyline Simplification using the Hausdorff and Fréchet Distance , 2018, SoCG.