Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.

[1]  R. Narayan,et al.  Evolving non-thermal electrons in simulations of black hole accretion , 2017, 1704.05092.

[2]  K. Asada,et al.  INDICATION OF THE BLACK HOLE POWERED JET IN M87 BY VSOP OBSERVATIONS , 2016 .

[3]  M. Inoue,et al.  LEPTON ACCELERATION IN THE VICINITY OF THE EVENT HORIZON: HIGH-ENERGY AND VERY-HIGH-ENERGY EMISSIONS FROM ROTATING BLACK HOLES WITH VARIOUS MASSES , 2016, 1610.07819.

[4]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[5]  Masanori Nakamura,et al.  The Greenland Telescope: antenna retrofit status and future plans , 2016, Astronomical Telescopes + Instrumentation.

[6]  B. Peterson,et al.  Parsec-scale radio morphology and variability of a changing-look AGN: the case of Mrk 590 , 2016, 1602.07289.

[7]  Odyssey: A Public GPU-Based Code for General-Relativistic Radiative Transfer in Kerr Spacetime , 2016, 1601.02063.

[8]  S. Sazonov,et al.  Thermal X-ray emission from a baryonic jet: a self-consistent multicolour spectral model , 2015, 1510.05563.

[9]  J. A. Fern'andez-Ontiveros,et al.  The central parsecs of M87: jet emission and an elusive accretion disc , 2015, 1508.02302.

[10]  A. Tchekhovskoy,et al.  HORIZON-SCALE LEPTON ACCELERATION IN JETS: EXPLAINING THE COMPACT RADIO EMISSION IN M87 , 2015, 1506.04754.

[11]  S. Shabala,et al.  ENERGETICS AND LIFETIMES OF LOCAL RADIO ACTIVE GALACTIC NUCLEI , 2015, 1504.05204.

[12]  M. Kino,et al.  MAGNETIZATION DEGREE AT THE JET BASE OF M87 DERIVED FROM THE EVENT HORIZON TELESCOPE DATA: TESTING THE MAGNETICALLY DRIVEN JET PARADIGM , 2015, 1502.03900.

[13]  K. Asada,et al.  STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE , 2015, 1501.02112.

[14]  J. Dexter,et al.  The Event Horizon Telescope: exploring strong gravity and accretion physics , 2014, 1410.2899.

[15]  E. Ros,et al.  MOJAVE. XII. ACCELERATION AND COLLIMATION OF BLAZAR JETS ON PARSEC SCALES , 2014, 1410.8502.

[16]  THE RESOLVED OUTFLOW FROM 3C 48 , 2014 .

[17]  G. Werner,et al.  THE EXTENT OF POWER-LAW ENERGY SPECTRA IN COLLISIONLESS RELATIVISTIC MAGNETIC RECONNECTION IN PAIR PLASMAS , 2014, 1409.8262.

[18]  P. Koch,et al.  Greenland telescope project: Direct confirmation of black hole with sub‐millimeter VLBI , 2014, 1407.2450.

[19]  M. Auger,et al.  Radio-mode feedback in local AGNs: dependence on the central black hole parameters , 2014, 1406.6209.

[20]  K. Toma,et al.  Electromotive force in the Blandford–Znajek process , 2014, 1405.7437.

[21]  P. Padovani,et al.  The jet–disc connection in AGN , 2014, Proceedings of the International Astronomical Union.

[22]  Canada.,et al.  IMAGING THE SUPERMASSIVE BLACK HOLE SHADOW AND JET BASE OF M87 WITH THE EVENT HORIZON TELESCOPE , 2014, 1404.7095.

[23]  Z. Dai,et al.  SIMILAR RADIATION MECHANISM IN GAMMA-RAY BURSTS AND BLAZARS: EVIDENCE FROM TWO LUMINOSITY CORRELATIONS , 2014, 1403.7857.

[24]  L. Sironi,et al.  RELATIVISTIC RECONNECTION: AN EFFICIENT SOURCE OF NON-THERMAL PARTICLES , 2014, 1401.5471.

[25]  G. Stewart,et al.  Do the spectral energy distributions of type 1 active galactic nuclei show diversity , 2013, 1312.1344.

[26]  R. Nemmen,et al.  THE ROLE OF THE ACCRETION DISK, DUST, AND JETS IN THE IR EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI , 2013, 1310.1892.

[27]  P. Raffin,et al.  Greenland Telescope (GLT) Project: "A Direct Confirmation of Black Hole with Submillimeter VLBI" , 2013, 1310.1665.

[28]  A. Levinson,et al.  Loaded magnetohydrodynamic flows in Kerr spacetime , 2013, 1310.0360.

[29]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets – IV. BL Lac type blazars and the physical basis for the blazar sequence , 2013, 1310.0462.

[30]  K. Asada,et al.  THE PARABOLIC JET STRUCTURE IN M87 AS A MAGNETOHYDRODYNAMIC NOZZLE , 2013, 1308.1436.

[31]  Akira Mizuta,et al.  PHOTOSPHERIC EMISSION FROM STRATIFIED JETS , 2013, 1306.4822.

[32]  L. Ho,et al.  A PHYSICAL LINK BETWEEN JET FORMATION AND HOT PLASMA IN ACTIVE GALACTIC NUCLEI , 2013, 1305.0067.

[33]  Harvard-Smithsonian Center for Astrophysics,et al.  GRay: A MASSIVELY PARALLEL GPU-BASED CODE FOR RAY TRACING IN RELATIVISTIC SPACETIMES , 2013, 1303.5057.

[34]  G. Ghisellini Radiative Processes in High Energy Astrophysics , 2012, 1202.5949.

[35]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[36]  Z. Younsi,et al.  General relativistic radiative transfer: formulation and emission from structured tori around black holes , 2012, 1207.4234.

[37]  H. Pu,et al.  LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE , 2012, 1209.4707.

[38]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[39]  Guy Perrin,et al.  GYOTO: a new general relativistic ray-tracing code , 2011, 1109.4769.

[40]  Noriyuki Kawaguchi,et al.  An origin of the radio jet in M87 at the location of the central black hole , 2011, Nature.

[41]  C. Gammie,et al.  NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS , 2011 .

[42]  C. Gammie,et al.  PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI , 2011, 1104.2042.

[43]  Caltech,et al.  ACCRETION RATE AND THE PHYSICAL NATURE OF UNOBSCURED ACTIVE GALAXIES , 2011, 1103.0276.

[44]  P. Kharb,et al.  Signatures of large-scale magnetic fields in AGN jets: transverse asymmetries , 2011, 1101.5149.

[45]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[46]  Frank Rieger,et al.  VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87? , 2010, 1011.5319.

[47]  M. Honda Scalings of the synchrotron cut-off and turbulent correlation of active galactic nucleus jets , 2010, 1009.0312.

[48]  L. Sironi,et al.  PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS ELECTRON–ION SHOCKS , 2010, 1009.0024.

[49]  A. Broderick,et al.  PARSEC-SCALE FARADAY ROTATION MEASURES FROM GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS , 2010, 1006.5015.

[50]  Eric Agol,et al.  A FAST NEW PUBLIC CODE FOR COMPUTING PHOTON ORBITS IN A KERR SPACETIME , 2009, 0903.0620.

[51]  Y. Lyubarsky ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS , 2009, 0902.3357.

[52]  A. Loeb,et al.  IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN , 2008, 0812.0366.

[53]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[54]  Kinwah Wu,et al.  Line emission from optically thick relativistic accretion tori , 2007, 0709.2145.

[55]  Harvard University,et al.  Disc–jet coupling in black hole accretion systems – II. Force-free electrodynamical models , 2006, astro-ph/0607576.

[56]  V. Beskin,et al.  The effective acceleration of plasma outflow in the paraboloidal magnetic field , 2006 .

[57]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[58]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[59]  D. Meier Magnetically Dominated Accretion Flows (MDAFS) and Jet Production in the Lowhard State , 2005, astro-ph/0504511.

[60]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[61]  S. Komissarov Observations of the Blandford–Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres , 2005, astro-ph/0501599.

[62]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[63]  Kinwah Wu,et al.  Radiation transfer of emission lines in curved space-time , 2004, astro-ph/0406401.

[64]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[65]  S. S. Komissarov,et al.  Electrodynamics of black hole magnetospheres , 2004, astro-ph/0402403.

[66]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[67]  E. Bertschinger,et al.  The Harmonic Structure of High-Frequency Quasi-periodic Oscillations in Accreting Black Holes , 2003, astro-ph/0309458.

[68]  Nrao,et al.  Relativistic models and the jet velocity field in the radio galaxy 3C 31 , 2002, astro-ph/0206215.

[69]  D. Meier,et al.  Extraction of Black Hole Rotational Energy by a Magnetic Field and the Formation of Relativistic Jets , 2002, Science.

[70]  William B. Sparks,et al.  Deep 10 Micron Imaging of M87 , 2001 .

[71]  C. Fendt,et al.  Magnetically driven superluminal motion from rotating black holes Solution of the magnetic wind equation in Kerr metric , 2001, astro-ph/0101373.

[72]  William B. Sparks,et al.  Optical and Radio Polarimetry of the M87 Jet at 02 Resolution , 1999, astro-ph/9901176.

[73]  R. Rafikov,et al.  On the MHD effects on the force-free monopole outflow , 1998 .

[74]  J. Anton Zensus,et al.  PARSEC-SCALE JETS IN EXTRAGALACTIC RADIO SOURCES1 , 1997 .

[75]  Y. Tatematsu,et al.  Magnetohydrodynamic flows in Kerr geometry : energy extraction from black holes , 1990 .

[76]  Roger D. Blandford,et al.  Particle acceleration at astrophysical shocks: A theory of cosmic ray origin , 1987 .

[77]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[78]  A. Marscher,et al.  Relativistic jets and the continuum emission in QSOs , 1979 .

[79]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .

[80]  W. Tucker Radiation Processes In Astrophysics , 1978 .

[81]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[82]  R. D. Blandford,et al.  Accretion Disc Electrodynamics — A Model for Double Radio Sources , 1976 .