On the bowing parameter in Cd1−xZnxTe

Cd1−xZnxTe thin films were prepared on 7059 Corning glass substrates using an rf magnetron sputtering system and CdTe(1−y)+ZnTe(y) targets. The concentration (x) of Zn in the films did not coincide with the relative weight (y) of the ZnTe powder in the compressed targets. Values of x were in the range 0–0.30 as determined from x-ray diffraction patterns. The band gap energy (Eg) of the Cd1−xZnxTe samples was calculated from the photoreflectance spectra measured on the films. The position of the experimental points in the Eg versus x plot show a deviation from the phenomenological quadratic relation Eg=Eg0+ax+bx2 calculated within the virtual crystal approximation (VCA). The depart of the Eg values for higher Zn concentrations from the expected VCA model is probably due to a larger clustering of Zn atoms and/or a percolation phenomena. We obtain fitted values for the parameters a and b within the VCA approach. Comparison with data reported by other authors is made.

[1]  Satoshi Miyajima,et al.  CdZnTe detector in diagnostic x-ray spectroscopy. , 2002, Medical physics.

[2]  O. Zelaya-Ángel,et al.  Influence of crystalline quality on the thermal, optical and structural properties of Cd1−xZnxTe for low zinc concentration , 2001 .

[3]  G. S. Huang,et al.  Microphotoluminescence mapping on CdZnTe: Zn distribution , 2001 .

[4]  V. Kozlovsky,et al.  Band alignment in ZnCdTe/ZnTe and ZnCdSe/ZnSe SQW structures grown on GaAs(100) by MBE , 2000 .

[5]  Jorge I. Marin-Hurtado,et al.  Influence of Disorder Effects on Cd1–xZnxTe Optical Properties , 2000 .

[6]  J. Franc,et al.  Determination of energy gap in Cd1-xZnxTe (x = 0-0.06) , 2000 .

[7]  O. Zelaya-Ángel,et al.  Growth and characterization of Cd1−xZnxTe crystals with high Zn concentrations , 2000 .

[8]  H. Sekiya,et al.  Development of low background CdZnTe detectors for detection of double beta decays of 64Zn , 1999 .

[9]  Wei,et al.  Localization and percolation in semiconductor alloys: GaAsN vs GaAsP. , 1996, Physical review. B, Condensed matter.

[10]  Jack Tueller,et al.  CdZnTe background measurements at balloon altitudes , 1996, Optics & Photonics.

[11]  O. Zelaya-Ángel,et al.  Temperature dependence of the band gap of Cd1−xZnxTe alloys of low zinc concentrations , 1996 .

[12]  B. Samanta,et al.  Study of the microstructure and optical properties of polycrystalline Cd1 - xZnxTe thin films , 1995 .

[13]  A. J. Syllaios,et al.  A comparison of techniques for nondestructive composition measurements in CdZnTe substrates , 1995 .

[14]  Ming-Fu Li,et al.  Relativistic band structure of ternary II-VI semiconductor alloys containing Cd, Zn, Se and Te , 1995 .

[15]  Li,et al.  Optical properties of CdTe/Cd1-xZnxTe strained-layer single quantum wells. , 1992, Physical review. B, Condensed matter.

[16]  Niles,et al.  Determination of the bowing parameter of the split-off band in Cd0.8Zn0.2Te(100) by angle-resolved photoemission spectroscopy. , 1992, Physical review. B, Condensed matter.

[17]  C. Ferekides,et al.  Films and junctions of cadmium zinc telluride , 1992 .

[18]  K. Benz,et al.  Excitonic line broadening in bulk grown Cd1−xZnxTe , 1992 .

[19]  Jones,et al.  Determination of the dependence of the band-gap energy on composition for Cd1-xZnxTe. , 1992, Physical review. B, Condensed matter.

[20]  G. Contreras-Puente,et al.  Polycrystalline Cd1−xZnxTe thin films on glass by pulsed laser deposition , 1991 .

[21]  J. González-Hernández,et al.  Structure and optical characterization of ZnxCd1−xTe thin films prepared by the close spaced vapor transport method , 1991 .

[22]  M. H. Kalisher,et al.  Optical techniques for composition measurement of bulk and thin‐film Cd1−yZnyTe , 1991 .

[23]  S. Wei,et al.  Disorder effects on the density of states of the II-VI semiconductor alloys Hg sub 0. 5 Cd sub 0. 5 Te, Cd sub 0. 5 Zn sub 0. 5 Te, and Hg sub 0. 5 Zn sub 0. 5 Te , 1991 .

[24]  Madhusoodanan,et al.  Percolation threshold of thermal conduction in AxIVB , 1988, Physical review. B, Condensed matter.

[25]  Wolff,et al.  Te and Cd nuclear-magnetic-resonance study of local structure and bonding in Cd1-xZnxTe. , 1987, Physical review. B, Condensed matter.

[26]  P. M. Raccah,et al.  Optoelectronic properties of Cd1−xZnxTe films grown by molecular beam epitaxy on GaAs substrates , 1985 .

[27]  H. Schock,et al.  Ternary II-VI compound thin films for tandem solar cell applications , 1985 .

[28]  O. Maksimova,et al.  Reflectivity Spectra and Band Structure of the ZnTe–CdTe System , 1981 .

[29]  Kazuyuki Saito,et al.  Crystal growth of ZnxCd1−xTe solid solutions and their optical properties at the photon energies of the lowest band‐gap region , 1973 .

[30]  D. E. Aspnes,et al.  Schottky-Barrier Electroreflectance: Application to GaAs , 1973 .

[31]  D. Aspnes,et al.  High-Resolution Interband-Energy Measurements from Electroreflectance Spectra , 1971 .

[32]  B. S. Naidu,et al.  Characterization of two-source evaporated cadmium zinc telluride thin films , 1996 .

[33]  K. Chattopadhyay,et al.  Preparation and optical properties of Cd1−xZnxTe films , 1991 .

[34]  P. M. Amirtharaj,et al.  Growth and characterization of Cd1−xZnxTe and Hg1−yZnyTe , 1988 .

[35]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .