Dynamics of a generic Brownian motion: Recursive aspects

We study the local fluctuations of Brownian motions which are represented by infinite binary strings which are random in the sense of Kolmogorov-Chaitin. We show how the dynamical properties of such a Brownian motion at a point depend on its recursive properties.

[1]  J. Kahane Some Random Series of Functions , 1985 .

[2]  Willem L. Fouché,et al.  Descriptive Complexity and Reflective Properties of Combinatorial Configurations , 1996 .

[3]  Gregory J. Chaitin,et al.  Algorithmic Information Theory , 1987, IBM J. Res. Dev..

[4]  Willem L. Fouché,et al.  Arithmetical representations of Brownian motion I , 2000, Journal of Symbolic Logic.

[5]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[6]  S. Orey,et al.  How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .

[7]  Aleksandr I︠A︡kovlevich Khinchin Asymptotische Gesetze der Wahrscheinlichkeits-Rechnung , 1933 .

[8]  Anil Nerode,et al.  The Law of the Iterated Logarithm for Algorithmically Random Brownian Motion , 2007, LFCS.

[9]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[10]  W. Fouché The Descriptive Complexity of Brownian Motion , 2000 .

[11]  A. Khintchine Asymptotische Gesetze der Wahrscheinlichkeitsrechnung , 1933 .

[12]  Michiel van Lambalgen,et al.  Von Mises' Definition of Random Sequences Reconsidered , 1987, J. Symb. Log..

[13]  R. Rado Universal graphs and universal functions , 1964 .

[14]  D. Freedman Brownian motion and diffusion , 1971 .

[15]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[16]  Brownian local minima, random dense countable sets and random equivalence classes , 2006, math/0601673.

[17]  V. Vovk The Law of the Iterated Logarithm for Random Kolmogorov, or Chaotic, Sequences , 1988 .

[18]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[19]  Large increments of Brownian motion , 1975 .