Dynamics of a generic Brownian motion: Recursive aspects
暂无分享,去创建一个
[1] J. Kahane. Some Random Series of Functions , 1985 .
[2] Willem L. Fouché,et al. Descriptive Complexity and Reflective Properties of Combinatorial Configurations , 1996 .
[3] Gregory J. Chaitin,et al. Algorithmic Information Theory , 1987, IBM J. Res. Dev..
[4] Willem L. Fouché,et al. Arithmetical representations of Brownian motion I , 2000, Journal of Symbolic Logic.
[5] Per Martin-Löf,et al. The Definition of Random Sequences , 1966, Inf. Control..
[6] S. Orey,et al. How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .
[7] Aleksandr I︠A︡kovlevich Khinchin. Asymptotische Gesetze der Wahrscheinlichkeits-Rechnung , 1933 .
[8] Anil Nerode,et al. The Law of the Iterated Logarithm for Algorithmically Random Brownian Motion , 2007, LFCS.
[9] William I. Gasarch,et al. Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.
[10] W. Fouché. The Descriptive Complexity of Brownian Motion , 2000 .
[11] A. Khintchine. Asymptotische Gesetze der Wahrscheinlichkeitsrechnung , 1933 .
[12] Michiel van Lambalgen,et al. Von Mises' Definition of Random Sequences Reconsidered , 1987, J. Symb. Log..
[13] R. Rado. Universal graphs and universal functions , 1964 .
[14] D. Freedman. Brownian motion and diffusion , 1971 .
[15] Gregory J. Chaitin,et al. On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.
[16] Brownian local minima, random dense countable sets and random equivalence classes , 2006, math/0601673.
[17] V. Vovk. The Law of the Iterated Logarithm for Random Kolmogorov, or Chaotic, Sequences , 1988 .
[18] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[19] Large increments of Brownian motion , 1975 .