Approximating the chromatic index of multigraphs

AbstractIt is well known that if G is a multigraph then χ′(G)≥χ′*(G):=max {Δ(G),Γ(G)}, where χ′(G) is the chromatic index of G, χ′*(G) is the fractional chromatic index of G, Δ(G) is the maximum degree of G, and Γ(G)=max {2|E(G[U])|/(|U|−1):U⊆V(G),|U|≥3, |U| is odd}. The conjecture that χ′(G)≤max {Δ(G)+1,⌈Γ(G)⌉} was made independently by Goldberg (Discret. Anal. 23:3–7, 1973), Anderson (Math. Scand. 40:161–175, 1977), and Seymour (Proc. Lond. Math. Soc. 38:423–460, 1979). Using a probabilistic argument Kahn showed that for any c>0 there exists D>0 such that χ′(G)≤χ′*(G)+cχ′*(G) when χ′*(G)>D. Nishizeki and Kashiwagi proved this conjecture for multigraphs G with χ′(G)>⌊(11Δ(G)+8)/10⌋; and Scheide recently improved this bound to χ′(G)>⌊(15Δ(G)+12)/14⌋. We prove this conjecture for multigraphs G with $\chi'(G)>\lfloor\Delta(G)+\sqrt{\Delta(G)/2}\rfloor$ , improving the above mentioned results. As a consequence, for multigraphs G with $\chi'(G)>\Delta(G)+\sqrt {\Delta(G)/2}$ the answer to a 1964 problem of Vizing is in the affirmative.

[1]  Michael Stiebitz,et al.  Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture , 2012 .

[2]  G. Chartrand,et al.  Edge Colorings of Graphs , 2008 .

[3]  Odile Marcotte On the chromatic index of multigraphs and a conjecture of Seymour (I) , 1986, J. Comb. Theory, Ser. B.

[4]  Tommy R. Jensen,et al.  Graph Coloring Problems , 1994 .

[5]  Takao Nishizeki,et al.  A Better than "Best Possible" Algorithm to Edge Color Multigraphs , 1986, J. Algorithms.

[6]  Alberto Caprara,et al.  Improving a Family of Approximation Algorithms to Edge Color Multigraphs , 1998, Inf. Process. Lett..

[7]  Odile Marcotte Exact Edge-Colorings of Graphs without Prescribed Minors , 1990, Polyhedral Combinatorics.

[8]  Hal A. Kierstead,et al.  On the chromatic index of multigraphs without large triangles , 1984, J. Comb. Theory, Ser. B.

[9]  Peter Sanders,et al.  An asymptotic approximation scheme for multigraph edge coloring , 2005, SODA '05.

[10]  Michael Plantholt,et al.  A sublinear bound on the chromatic index of multigraphs , 1999, Discret. Math..

[11]  Odile Marcotte,et al.  On the Chromatic Index of Multigraphs and a Conjecture of Seymour, (II) , 1990, Polyhedral Combinatorics.

[12]  Paul D. Seymour,et al.  Colouring series-parallel graphs , 1990, Comb..

[13]  Tommy R. Jensen,et al.  Graph Coloring Problems: Jensen/Graph , 1994 .

[14]  Takao Nishizeki,et al.  On the 1.1 Edge-Coloring of Multigraphs , 1990, SIAM J. Discret. Math..

[15]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[16]  Shailesh K. Tipnis,et al.  Regular Multigraphs of High Degree are 1‐Factorizable , 1991 .

[17]  P. D. Seymour,et al.  On Multi‐Colourings of Cubic Graphs, and Conjectures of Fulkerson and Tutte , 1979 .

[18]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[19]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[20]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[21]  C. Shannon A Theorem on Coloring the Lines of a Network , 1949 .

[22]  Mark K. Goldberg,et al.  Edge-coloring of multigraphs: Recoloring technique , 1984, J. Graph Theory.

[23]  Jeff Kahn,et al.  Asymptotics of the Chromatic Index for Multigraphs , 1996, J. Comb. Theory, Ser. B.