A Framework for Data Modeling and Querying Dataspace Systems

A dataspace system manages the large scale heterogeneous collection of data distributed over various data sources in different formats. It addresses the structured, semi- structured, and unstructured data in coordinated manner without presuming the semantic integration among them. Therefore, the management of heterogeneous data in a dataspace system is a crucial challenge. This work introduces a layered framework to investigate the data management issue in a dataspace system. Our framework is based on the dataspace principle, i.e., "Pay-As-You-Go principle", which improves the performance of the system with time, and adds the efforts when require. We have discussed several research issues for designing of a dataspace system.

[1]  Ying Pan,et al.  A Pay-as-You-Go Framework for Data Management , 2011, 2011 International Conference on Computational and Information Sciences.

[2]  Mrityunjay Singh,et al.  A Survey on Dataspace , 2011 .

[3]  Alon Y. Halevy,et al.  Pay-as-you-go user feedback for dataspace systems , 2008, SIGMOD Conference.

[4]  Ling Chen,et al.  Practicability of Dataspace Systems , 2010, J. Digit. Content Technol. its Appl..

[5]  De Xu,et al.  Building Semantic Relationships Incrementally in Dataspace , 2009, 2009 First International Conference on Information Science and Engineering.

[6]  Derong Shen,et al.  Discovering Relationships among Data Resources in DataSpace , 2009, 2009 Sixth Web Information Systems and Applications Conference.

[7]  Marcos Antonio,et al.  iMeMex: A Platform for Personal Dataspace Management , 2006 .

[8]  Alon Y. Halevy,et al.  Bootstrapping pay-as-you-go data integration systems , 2008, SIGMOD Conference.

[9]  Jens Dittrich,et al.  iDM: a unified and versatile data model for personal dataspace management , 2006, VLDB.

[10]  Peter Brezany,et al.  Towards Large-Scale Scientific Dataspaces for e-Science Applications , 2010, DASFAA Workshops.

[11]  Sujeet Pradhan,et al.  Towards a Novel Desktop Search Technique , 2007, DEXA.

[12]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[13]  Michael J. Franklin,et al.  Soliciting User Feedback in a Dataspace System , 2007 .

[14]  Nicoletta Dessì,et al.  Towards Scientific Dataspaces , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[15]  David Maier,et al.  Principles of dataspace systems , 2006, PODS '06.

[16]  Lei Chen,et al.  Indexing dataspaces with partitions , 2012, World Wide Web.

[17]  Hanna M. Wallach,et al.  Topic modeling: beyond bag-of-words , 2006, ICML.

[18]  Norman W. Paton,et al.  User Feedback as a First Class Citizen in Information Integration Systems , 2011, CIDR.

[19]  David Maier,et al.  From databases to dataspaces: a new abstraction for information management , 2005, SGMD.

[20]  Alon Y. Halevy,et al.  Indexing dataspaces , 2007, SIGMOD '07.

[21]  Mengchi Liu,et al.  Modeling heterogeneous data in dataspace , 2008, IRI.

[22]  Alon Y. Halevy,et al.  Malleable Schemas: A Preliminary Report , 2005, WebDB.

[23]  Xiaofeng Meng,et al.  Research on personal dataspace management , 2008, IDAR '08.

[24]  Natarajan Meghanathan,et al.  Advances in Network Security and Applications , 2011 .

[25]  Alon Y. Halevy,et al.  Data Modeling in Dataspace Support Platforms , 2009, Conceptual Modeling: Foundations and Applications.

[26]  Heiner Stuckenschmidt,et al.  Ontology-Based Integration of Information - A Survey of Existing Approaches , 2001, OIS@IJCAI.

[27]  Lei Jin,et al.  An Extensible Data Model with Security Support for Dataspace Management , 2008, 2008 10th IEEE International Conference on High Performance Computing and Communications.