Recent advances in 1D micro- and nanoscale indium oxide structures

Abstract Due to a variety of outstanding physical and chemical properties such as wide band gap, low resistance, good catalysis, high surface-to-volume ratio, high sensitivity and strong interaction with gas molecules, one-dimensional (1D) micro- and nanoscale indium oxide (In2O3) structures are capable for high-performance optical, electrical and chemical devices, which have attracted much attention in the last decade. In this paper, we first summarize various fabrication methods of 1D micro- and nanoscale In2O3 structures such as chemical vapor deposition, hydrothermal method, thermal evaporation method and electrospinning, then the interesting electrical and optical properties and their potential applications including gas sensors, field-emission transitions, photocatalysts and ultraviolet detectors are reviewed. At last, in order to fulfill the potential applications of 1D micro- and nanoscale In2O3 structures, some challenges have also been discussed.

[1]  Handong Sun,et al.  UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires , 2011, Nanotechnology.

[2]  Zhouping Yin,et al.  Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers , 2014, Scientific Reports.

[3]  D. Z. Wang,et al.  Self‐Assembled In2O3 Nanocrystal Chains and Nanowire Networks , 2004 .

[4]  P. Thilakan,et al.  Oxidation dependent crystallization behaviour of IO and ITO thin films deposited by reactive thermal deposition technique , 1998 .

[5]  Xiaoyun Li,et al.  Efficient photocatalytic decomposition of perfluorooctanoic acid by indium oxide and its mechanism. , 2012, Environmental science & technology.

[6]  Gyu-Chul Yi,et al.  Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature , 2004 .

[7]  S. K. Sudheer,et al.  Effect of tantalum doping on the structural and optical properties of RF magnetron sputtered indium oxide thin films , 2015 .

[8]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[9]  R. L. Weiher,et al.  Optical Properties of Indium Oxide , 1966 .

[10]  Sunghoon Park,et al.  Growth of SnO2 nanowires by thermal evaporation on Au-coated Si substrates , 2009 .

[11]  Jian Wu,et al.  Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method , 2007 .

[12]  Novel In2O3 nanostructures fabricated by controlling the kinetics factor for field emission display , 2011 .

[13]  Shiling Yuan,et al.  In(2)O(3) microbundles constructed with well-aligned single-crystalline nanorods: F127-directed self-assembly and enhanced gas sensing performance. , 2011, Journal of colloid and interface science.

[14]  S. Ghosh,et al.  H2S sensing properties of La-doped nanocrystalline In2O3 , 2008 .

[15]  R. Smalley,et al.  Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating" Chemical Vapor Deposition Process , 2004 .

[16]  Hysteresis in In2O3:Zn nanowire field-effect transistor and its application as a nonvolatile memory device , 2008 .

[17]  Li Chang,et al.  Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures , 2013 .

[18]  Norio Miura,et al.  PREPARATION OF INDIUM OXIDE THIN FILM BY SPIN-COATING METHOD AND ITS GAS-SENSING PROPERTIES , 1998 .

[19]  F. Zhou,et al.  Synthesis and visible light photo-electrochemical behaviors of In2O3-sensitized ZnO nanowire array film , 2011 .

[20]  Hyunsu Kim,et al.  Structure and NO2 gas sensing properties of SnO2-core/In2O3-shell nanobelts , 2012 .

[21]  Peng Song,et al.  In2O3 nanosheets array directly grown on Al2O3 ceramic tube and their gas sensing performance , 2017 .

[22]  G. Sberveglieri,et al.  Growth of tin oxide nanocrystals , 2005 .

[23]  Y. Bando,et al.  Synthesis of In2O3 nanowire-decorated Ga2O3 nanobelt heterostructures and their electrical and field-emission properties. , 2010, ACS nano.

[24]  Christian Colliex,et al.  Synthesis of Nanoparticles and Nanotubes with Well-Separated Layers , 1997 .

[25]  Zhong Lin Wang,et al.  Ultrathin In2O3 nanowires with diameters below 4 nm: synthesis, reversible wettability switching behavior, and transparent thin-film transistor applications. , 2011, ACS nano.

[26]  Vandana,et al.  Anti-reflection In2O3 nanocones for silicon solar cells , 2014 .

[27]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[28]  Meital Reches,et al.  Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes , 2003, Science.

[29]  M. Mizuhashi Electrical properties of vacuum-deposited indium oxide and indium tin oxide films , 1980 .

[30]  R. Tenne,et al.  Cage structures and nanotubes of NiCl2 , 1998, Nature.

[31]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[32]  D. Mihailovic,et al.  Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 Nanotubes , 2001, Science.

[33]  G. Yi Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications , 2012 .

[34]  Y. Long,et al.  Fabrication of ultrathin In2O3 hollow fibers for UV light sensing , 2014 .

[35]  S. Christoulakis,et al.  Low temperature indium oxide gas sensors , 2006 .

[36]  Ahsanulhaq Qurashi,et al.  Fabrication and gas sensing properties of In2O3 nanopushpins , 2009 .

[37]  G. Sberveglieri,et al.  Preparation of Radial and Longitudinal Nanosized Heterostructures of In2O3 and SnO2 , 2007 .

[38]  L. Wang,et al.  The fabrication of In2O3 nanowire and nanotube by single nozzle electrospinning and their gas sensing property , 2016, Journal of Materials Science: Materials in Electronics.

[39]  H. Zeng,et al.  In2O3 Nanotowers: Controlled Synthesis and Mechanism Analysis , 2007 .

[40]  W. Jin,et al.  Ultraviolet photodetection properties of indium oxide nanowires , 2003 .

[41]  F. O. Adurodija,et al.  Crystallization process and electro-optical properties of In2O3 and ITO thin films , 2006 .

[42]  Wenjia Zhou,et al.  Size-Controllable Growth of Single Crystal In(OH)3 and In2O3 Nanocubes , 2005 .

[43]  Shaomin Liu,et al.  Fabrication of α-Fe2O3/In2O3 composite hollow microspheres: A novel hybrid photocatalyst for toluene degradation under visible light. , 2015, Journal of colloid and interface science.

[44]  Bin Chen,et al.  In2O3nanocubes/carbon nanofibers heterostructures with high visible light photocatalytic activity , 2012 .

[45]  Shui-Tong Lee,et al.  High-performance, fully transparent, and flexible zinc-doped indium oxide nanowire transistors , 2009 .

[46]  Ahsanulhaq Qurashi,et al.  Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties , 2010 .

[47]  A. Mondal,et al.  In2-XO3-Y 1D perpendicular nanostructure arrays as ultraviolet detector , 2015 .

[48]  Qin Li,et al.  Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties , 2007 .

[49]  Sunghoon Song,et al.  Structural and electrical characterization of intrinsic n-type In2O3 nanowires , 2008 .

[50]  Zhong Lin Wang,et al.  Electronic transport in superlattice-structured ZnO Nanohelix. , 2009, Nano letters.

[51]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[52]  S. Sōmiya Hydrothermal Reactions for Materials Science and Engineering , 1990 .

[53]  Yoshifumi Yamamoto,et al.  Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation , 2002 .

[54]  Hailong Li,et al.  Electrospun metal oxide-TiO2 nanofibers for elemental mercury removal from flue gas. , 2012, Journal of hazardous materials.

[55]  G. Qiao,et al.  High performance ethanol sensing films fabricated from ZnO and In2O3 nanofibers with a double-layer structure , 2012 .

[56]  Y. Zhang,et al.  Synthesis and photoluminescence of In2O3 nanocrystals and submicron crystals from InCl3•4H2O and thiourea , 2010 .

[57]  N. K. Gaur,et al.  Copper doped SnO2 nanowires as highly sensitive H2S gas sensor , 2009 .

[58]  Daoyuan Yang,et al.  Synthesis and performance of core–shell structured ZnO/In2O3 composites in situ growth , 2011 .

[59]  Weihua Tang,et al.  Synthesis and optical property of high purity AlN nanowires , 2007 .

[60]  H. Koinuma,et al.  Formation of highly aligned ZnO tubes on sapphire (0001) substrates , 2004 .

[61]  H. Hwang,et al.  Effects of channel-length scaling on In2O3 nanowire field effect transistors studied by conducting atomic force microscopy , 2007 .

[62]  Weihua Tang,et al.  Synthesis and characterization of straight and stacked-sheet AlN nanowires with high purity , 2008 .

[63]  Yangong Zheng,et al.  Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process , 2012 .

[64]  Xuhui Luo,et al.  Efficient field emission from single crystalline indium oxide pyramids , 2003 .

[65]  H. Cui,et al.  Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: Enhanced photocatalytic and gas-sensing properties. , 2017, Journal of colloid and interface science.

[66]  Shui-Tong Lee,et al.  Template fabrication of SiO2 nanotubes , 2007 .

[67]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[68]  S. Chaudhuri,et al.  Synthesis, photoluminescence and field emission properties of In2O3 nanowires , 2006 .

[69]  R. Yousefi,et al.  Growth and optical properties of ZnO–In2O3 heterostructure nanowires , 2013 .

[70]  V. Pillai,et al.  Efficient photoluminescence from pulsed laser ablated nanostructured indium oxide films , 2010 .

[71]  Tae-Wook Kim,et al.  Channel-length and gate-bias dependence of contact resistance and mobility for In2O3 nanowire field effect transistors , 2007 .

[72]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[73]  Daihua Zhang,et al.  Electronic transport studies of single-crystalline In2O3 nanowires , 2003 .

[74]  M. Reed,et al.  Comparison of laser-ablation and hot-wall chemical vapour deposition techniques for nanowire fabrication , 2006 .

[75]  Jinxing Wang,et al.  HCHO sensing properties of Ag-doped In2O3 nanofibers synthesized by electrospinning , 2009 .

[76]  K. Hanabusa,et al.  Preparation of helical transition-metal oxide tubes using organogelators as structure-directing agents. , 2002, Journal of the American Chemical Society.

[77]  E. Samulski,et al.  Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3 , 2001 .

[78]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[79]  T. Tseng,et al.  Low temperature synthesized Sn doped indium oxide nanowires , 2005 .

[80]  Sunghoon Park,et al.  Growth of mane-like ZnS nanostructures by using a two-heating zone-tube furnace: structural characterization and photoluminescence , 2009 .

[81]  S. A. Agnihotry,et al.  Studies on e-beam deposited transparent conductive films of In2O3: Sn at moderate substrate temperatures , 1985 .

[82]  Meijuan Zhao,et al.  Room-temperature ultraviolet-emitting In2O3 nanowires , 2003 .

[83]  M. Wong,et al.  A novel core–shell like composite In2O3@CaIn2O4 for efficient degradation of Methylene Blue by visible light , 2007 .

[84]  John A Rogers,et al.  High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. , 2009, Nano letters.

[85]  K. Kan,et al.  Synthesis of mesoporous K2O-In2O3 nanowires and NOx gas sensitive performance study in room temperature , 2017 .

[86]  X. Fang,et al.  Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires. , 2013, Journal of the American Chemical Society.

[87]  Guanghai Li,et al.  Ordered indium-oxide nanowire arrays and their photoluminescence properties , 2001 .

[88]  James L. Gole,et al.  Tin Oxide Nanowires, Nanoribbons, and Nanotubes , 2002 .

[89]  W. Pan,et al.  Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning , 2013 .

[90]  Hongwei Song,et al.  Preparation and bifunctional gas sensing properties of porous In2O3-CeO2 binary oxide nanotubes. , 2010, Inorganic chemistry.

[91]  Young-sik Cho,et al.  Controlled-Synthesis and Photocatalytic Properties of h-In 2 O 3 and c-In 2 O 3 , 2010 .

[92]  Jian-ming Hong,et al.  Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires , 2003 .

[93]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[94]  Yichun Liu,et al.  Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. , 2012, ACS applied materials & interfaces.

[95]  S. Rath,et al.  Effect of Thermal Annealing and Swift Heavy Ion Irradiation on the Optical Properties of Indium Oxide Thin Films , 2014 .

[96]  D. L. Zhang,et al.  Synthesis and photoluminescence property of indium oxide nanowires , 2008 .

[97]  Chaoyi Yan,et al.  Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors , 2010 .

[98]  In situ synthesis and phase transformation of In2O3/Sb core-shell nanostructures , 2005 .

[99]  S. K. Gupta,et al.  Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers , 2008 .

[100]  Chao Li,et al.  Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects , 2004 .

[101]  Ming Shen,et al.  Synthesis and photocatalytic properties of In2O3 micro/nanostructures with different morphologies , 2017 .

[102]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[103]  G. Meng,et al.  Catalytic growth of semiconducting In2O3 nanofibers , 2001 .

[104]  F. Shinoki,et al.  Optical properties of r.f. reactive sputtered tin-doped In2O3 films , 1979 .

[105]  M. Jayachandran,et al.  Spray pyrolysis growth and material properties of In2O3 films , 2002 .

[106]  Weihua Tang,et al.  Synthesis of GaN nanowires on gold-coated SiC substrates by novel pulsed electron deposition technique , 2008 .

[107]  Nianwu Li,et al.  Preparation of mesoporous In2O3 nanorods via a hydrothermal-annealing method and their gas sensing properties , 2012 .

[108]  Martin Liess,et al.  Electric-field-induced migration of chemisorbed gas molecules on a sensitive film—a new chemical sensor , 2002 .

[109]  Shashank Sharma,et al.  Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. , 2002, Journal of the American Chemical Society.

[110]  Jun Zhang,et al.  A route to Ag-catalyzed growth of the semiconducting In2O3 nanowires , 2003 .

[111]  A. Facchetti,et al.  High-performance transparent inorganic–organic hybrid thin-film n-type transistors , 2006, Nature materials.

[112]  K. Byrappa,et al.  Hydrothermal processing of materials: past, present and future , 2008 .

[113]  F. Tuzluca,et al.  Effects of graphite on the synthesis of 1-D single crystal In2O3 nanostructures at high temperature , 2017 .

[114]  Hao Tan,et al.  Alumina‐Template Synthesis of Fluorescent RuO2 Nanotubes Derived from Ru3(CO)12 Clusters , 2006 .

[115]  Pooi See Lee,et al.  Chemical sensing investigations on Zn–In2O3 nanowires , 2012 .

[116]  V. Cimalla,et al.  The influence of deposition parameters on room temperature ozone sensing properties of InOx films , 2001 .

[117]  Hiroyuki Fujiwara,et al.  High-mobility hydrogen-doped In2O3 transparent conductive oxide for a-Si:H/c-Si heterojunction solar cells , 2009 .

[118]  Hongwei Song,et al.  Porous In2O3:RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes: Electrospinning Preparation and Room Gas-Sensing Properties , 2010 .

[119]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[120]  Lili Xing,et al.  Temperature-dependent linear or nonlinear gas sensing characteristics of In2O3 mixed α-Fe2O3 nanorods with high sensitivity , 2011 .

[121]  D. Wexler,et al.  One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries , 2009 .

[122]  P. Ding,et al.  Synthesis and cathodoluminescence of In2O3–SnO2 nanowires heterostructures , 2010 .

[123]  M. Meyyappan,et al.  Direct integration of metal oxide nanowire in vertical field-effect transistor , 2004 .

[124]  Synthesis, Characterization and Gas Sensing Properties of In(OH)3 and In2O3 Nanorods through Carbon Spheres Template Method , 2012 .

[125]  Bin Chen,et al.  Controllable biomolecule-assisted synthesis and gas sensing properties of In 2 O 3 micro/nanostructures with double phases , 2017 .

[126]  J. Yeh,et al.  Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires , 2011 .

[127]  V. C. Padaki,et al.  Effect of sintering temperature on structural and optical properties of indium(III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[128]  Bing Wang,et al.  Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures , 2017 .

[129]  Ahsanulhaq Qurashi,et al.  A generic approach for controlled synthesis of In2O3 nanostructures for gas sensing applications , 2009 .

[130]  Deyu Li,et al.  Fabrication of silica nanotube arrays from vertical silicon nanowire templates. , 2003, Journal of the American Chemical Society.

[131]  Hui Wu,et al.  A flexible and transparent ceramic nanobelt network for soft electronics , 2014 .

[132]  H. Kind,et al.  MMo(3)Se(3) (M = Li(+), Na(+), Rb(+), Cs(+), NMe(4)(+)) nanowire formation via cation exchange in organic solution. , 2001, Journal of the American Chemical Society.

[133]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[134]  Donghui Wang,et al.  Efficient photocatalytic degradation of volatile organic compounds by porous indium hydroxide nanocrystals. , 2010, Environmental science & technology.

[135]  A. Ng,et al.  Indium oxide, tin oxide and indium tin oxide nanostructure growth by vapor deposition , 2012 .

[136]  Catalyst-free shape controlled synthesis of In2O3 pyramids and octahedron: Structural properties and growth mechanism , 2009 .

[137]  S. Komarneni,et al.  Synthesis of nanorods and nanowires using biomolecules under conventional- and microwave-hydrothermal conditions , 2008 .

[138]  Xinsheng Peng,et al.  Synthesis and photoluminescence of single-crystalline In2O3 nanowires , 2002 .

[139]  L. Qi,et al.  Synthesis of Hierarchical Superstructures Consisting of BaCrO4 Nanobelts in Catanionic Reverse Micelles , 2003 .

[140]  Dmitri Golberg,et al.  Single‐Crystalline In2O3 Nanotubes Filled with In , 2003 .

[141]  H. Mohamed,et al.  Synthesis, structure and optical properties of single-crystalline In2O3 nanowires , 2013 .

[142]  Tong Zhang,et al.  Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption , 2011 .

[143]  Y. Dzenis,et al.  Highly efficient rapid ethanol sensing based on Co-doped In₂O₃ nanowires. , 2011, Talanta.

[144]  C. Granqvist Transparent conductive electrodes for electrochromic devices: A review , 1993 .

[145]  Y. Hsieh,et al.  Defect-induced ferromagnetism in undoped In2O3 nanowires , 2014 .

[146]  M. Zheng,et al.  Self-assembly of versatile tubular-like In(2)O(3) nanostructures. , 2007, Nanotechnology.

[147]  E. Marzbanrad,et al.  Fast Response NO2 Gas Sensor Based on In2O3 Nanoparticles , 2013 .

[148]  E. Lacaze,et al.  Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies , 2003 .

[149]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[150]  T. Minami,et al.  New multicomponent transparent conducting oxide films for transparent electrodes of flat panel displays , 1996 .

[151]  Shui-Tong Lee,et al.  Photoresponse Properties of CdSe Single‐Nanoribbon Photodetectors , 2007 .

[152]  Chi-Chang Hu,et al.  Mesoporous Carbon Incorporated with In2O3 Nanoparticles as High‐Performance Supercapacitors , 2013 .

[153]  M. Jothibas,et al.  Preparation, characterization, spectroscopic (FT-IR, FT-Raman, UV and visible) studies, optical properties and Kubo gap analysis of In2O3 thin films , 2013 .

[154]  Yichun Liu,et al.  A facile fabrication of nitrogen-doped electrospun In 2 O 3 nanofibers with improved visible-light photocatalytic activity , 2017 .

[155]  L. Kong,et al.  Structural and photoluminescence properties of single-crystalline In2O3 films grown by metal organic vapor deposition , 2008 .

[156]  Jin-seong Park,et al.  Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer. , 2014, ACS nano.

[157]  Zheng Xu,et al.  Construction and photoluminescence of In2O3 nanotube array by CVD-template method , 2005 .

[158]  Jinhua Ye,et al.  Synthesis and Photocatalytic Activities of NaNbO3 Rods Modified by In2O3 Nanoparticles , 2010 .

[159]  M. Reed,et al.  Indium oxide nanostructures , 2006 .

[160]  A. Bard,et al.  Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. , 2001, Journal of the American Chemical Society.

[161]  W. Jäger,et al.  Complex Defect Structure in the Core of Sn-Doped In2O3 Nanorods and Its Relationship with a Dislocation-Driven Growth Mechanism , 2011 .

[162]  Sudipta Seal,et al.  One dimensional nanostructured materials , 2007 .

[163]  J. Jun,et al.  The structure and photoluminescence properties of TiO2-coated ZnS nanowires , 2009 .

[164]  Wei Li,et al.  Highly efficient rapid ethanol sensing based on In2−xNixO3 nanofibers , 2012 .

[165]  Il-Doo Kim,et al.  Selective and sensitive detection of trimethylamine using ZnO-In2O3 composite nanofibers , 2013 .

[166]  Elisabetta Comini,et al.  Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing , 2011 .

[167]  Po-Chiang Chen,et al.  Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films , 2009 .

[168]  Chih-Chieh Wang,et al.  Enhancing the Photon-Sensing Properties of ZnO Nanowires by Atomic Layer Deposition of Platinum , 2010 .

[169]  P. Prathap,et al.  Optical properties of In2O3 films prepared by spray pyrolysis , 2006 .

[170]  Ling Liu,et al.  Solvothermal synthesis of In(OH)3 nanorods and their conversion to In2O3 , 2010 .

[171]  H. Imai,et al.  Direct preparation of anatase TiO2 nanotubes in porous alumina membranes , 1999 .

[172]  Evolution in shapes of a series of (111)-based In2O3 particles , 2007 .

[173]  Z. Gan,et al.  Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires , 2017, Nano Research.

[174]  Wei Wang,et al.  A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers , 2009 .

[175]  W. Tseng,et al.  Effect of polyvinylpyrrolidone on morphology and structure of In2O3 nanorods by hydrothermal synthesis , 2009 .

[176]  Heon-Jin Choi,et al.  Single-crystal gallium nitride nanotubes , 2003, Nature.

[177]  K. Dewangan,et al.  Synthesis of monodisperse In2O3 nanoparticles and their d0 ferromagnetism , 2014 .

[178]  In-Sung Hwang,et al.  Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes. , 2007, Nano letters.

[179]  Tao Zhang,et al.  The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods , 2009, Nanotechnology.

[180]  K. V. van Bommel,et al.  Organic templates for the generation of inorganic materials. , 2003, Angewandte Chemie.

[181]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[182]  C. Sanjeeviraja,et al.  Optical, electrical and sensing properties of In2O3 nanoparticles , 2013 .

[183]  S. T. Lee,et al.  Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. , 2008, Nano letters.

[184]  Chia-Chun Chen,et al.  Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods , 2000 .