A Midpoint-Radius approach to regression with interval data

In this paper, a revisited interval approach for linear regression is proposed. In this context, according to the Midpoint-Radius (MR) representation, the uncertainty attached to the set-valued model can be decoupled from its trend. The estimated interval model is built from interval input-output data with the objective of covering all available data. The constrained optimization problem is addressed using a linear programming approach in which a new criterion is proposed for representing the global uncertainty of the interval model. The potential of the proposed method is illustrated by simulation examples.

[1]  Zenon Kulpa,et al.  On the Inclusion Properties of Interval Multiplication: A Diagrammatic Study , 2003 .

[2]  Ana Colubi,et al.  On a Linear Independence Test for Interval-Valued Random Sets , 2008, SMPS.

[3]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .

[4]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[5]  Pei-Yi Hao,et al.  Interval regression analysis using support vector networks , 2009, Fuzzy Sets Syst..

[6]  Masatoshi Sakawa,et al.  Multiobjective fuzzy linear regression analysis for fuzzy input-output data , 1992 .

[7]  Hideo Tanaka,et al.  Interval regression analysis by quadratic programming approach , 1998, IEEE Trans. Fuzzy Syst..

[8]  E. B. Vinokurov,et al.  Calculus of Approximations in Electrotechnical Engineering , 2011 .

[9]  M. Gil,et al.  Least squares fitting of an affine function and strength of association for interval-valued data , 2002 .

[10]  Eamonn J. Keogh,et al.  An online algorithm for segmenting time series , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[11]  Thierry Denoeux,et al.  Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..

[12]  Svetoslav Markov,et al.  On the algebraic Properties of Stochastic Arithmetic. Comparison to Interval Arithmetic , 2001 .

[13]  Renato Coppi,et al.  Management of uncertainty in Statistical Reasoning: The case of Regression Analysis , 2008, Int. J. Approx. Reason..

[14]  Ana Colubi,et al.  Testing linear independence in linear models with interval-valued data , 2007, Comput. Stat. Data Anal..

[15]  Witold Pedrycz,et al.  Evaluation of fuzzy linear regression models , 1991 .

[16]  C. R. Bector,et al.  A simple method for computation of fuzzy linear regression , 2005, Eur. J. Oper. Res..

[17]  Pierpaolo D'Urso,et al.  Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable , 2006, Comput. Stat. Data Anal..

[18]  Junzo Watada,et al.  Possibilistic linear regression analysis for fuzzy data , 1989 .

[19]  Sylvie Galichet,et al.  Linear Fuzzy Regression Using Trapezoidal Fuzzy Intervals , 2008, IPMU 2008.

[20]  Wolfgang Näther Regression with fuzzy random data , 2006, Comput. Stat. Data Anal..

[21]  Sylvie Galichet,et al.  Inverse controller design for fuzzy interval systems , 2006, IEEE Transactions on Fuzzy Systems.

[22]  Pierpaolo D'Urso,et al.  Least squares estimation of a linear regression model with LR fuzzy response , 2006, Comput. Stat. Data Anal..

[23]  Phil Diamond,et al.  Fuzzy least squares , 1988, Inf. Sci..

[24]  Jürgen Wolff von Gudenberg,et al.  Scientific Computing, Validated Numerics, Interval Methods , 2010, Springer US.

[25]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[26]  Volker Krätschmer Strong consistency of least-squares estimation in linear regression models with vague concepts , 2006 .

[27]  Chen-Chia Chuang,et al.  Extended support vector interval regression networks for interval input-output data , 2008, Inf. Sci..

[28]  Weldon A. Lodwick,et al.  Special issue: interfaces between fuzzy set theory and interval analysis , 2003, Fuzzy Sets Syst..

[29]  Hsien-Chung Wu,et al.  Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data , 2003, Comput. Stat. Data Anal..

[30]  Zenon Kulpa,et al.  Diagrammatic representation for interval arithmetic , 2001 .

[31]  Andrzej Bargiela,et al.  Granular clustering: a granular signature of data , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Carlo Bertoluzza,et al.  On a new class of distances between fuzzy numbers , 1995 .

[33]  Ana Colubi,et al.  Bootstrap Approach to Test the Linear Independence between Interval-valued Random Sets , 2004 .

[34]  Gwo-Hshiung Tzeng,et al.  General fuzzy piecewise regression analysis with automatic change-point detection , 2001, Fuzzy Sets Syst..

[35]  Kit Yan Chan,et al.  Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers , 2010, Inf. Sci..

[36]  Sylvie Galichet,et al.  Fuzzy piecewise linear regression , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[37]  Przemysław Grzegorzewski,et al.  Soft Methodology and Random Information Systems , 2004 .

[38]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[39]  Frank Klawonn,et al.  Improved fuzzy partitions for fuzzy regression models , 2003, Int. J. Approx. Reason..

[40]  P. Diamond,et al.  Fuzzy regression analysis , 1999 .

[41]  Sylvie Galichet,et al.  MIN and MAX Operators for Fuzzy Intervals and Their Potential Use in Aggregation Operators , 2007, IEEE Transactions on Fuzzy Systems.

[42]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[43]  Lei Zhang,et al.  Asymmetrical interval regression using extended epsilon-SVM with robust algorithm , 2009, Fuzzy Sets Syst..

[44]  Amory Bisserier,et al.  Une approche paramétrique de la régression linéaire floue - Formalisation par intervalles. (A parametrical approach for fuzzy linear regression - Interval based formalization) , 2010 .

[45]  Miin-Shen Yang,et al.  On a class of fuzzy c-numbers clustering procedures for fuzzy data , 1996, Fuzzy Sets Syst..

[46]  Ana Colubi,et al.  Estimation of a simple linear regression model for fuzzy random variables , 2009, Fuzzy Sets Syst..

[47]  Sylvie Galichet,et al.  A revisited approach to linear fuzzy regression using trapezoidal fuzzy intervals , 2010, Inf. Sci..

[48]  Svetoslav Markov,et al.  Computation of Algebraic Solutions to Interval Systems Via Systems of Coordinates , 2001 .

[49]  Ana Colubi,et al.  A linear regression model for imprecise response , 2010, Int. J. Approx. Reason..