Distributed Scatterer Interferometry With the Refinement of Spatiotemporal Coherence

The state-of-the-art techniques have demonstrated that coherence error degrades the performance of synthetic aperture radar (SAR) interferometry (InSAR) for distributed scatterers (DSs). This article aims at fully evaluating the influence of coherence error on DS InSAR time-series analysis. In particular, we present a methodology to increase the estimation accuracy of DS interferometry, with emphasis on spatiotemporal coherence refinement. The motive behind this is that bias removal and variance mitigation of sample coherence matrix impose optimum weighting for estimating phase series and geophysical parameters of interest, whereas maximization of temporal coherence in a reference network can avoid spatial error propagation during the least-squares adjustment. Rather than developing independent processing chains, we integrate this method into SqueeSAR technique and simultaneously take the advantage of StaMPS into consideration. Using simulation and real data over southwestern China, comprehensive comparisons before and after spatiotemporal coherence refinement are performed over various coherence scenarios. The results tested from different phase and displacement rate estimators validate the effectiveness of the presented method.

[1]  H. Zebker,et al.  Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos , 2007 .

[2]  Ramon F. Hanssen,et al.  Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Yuanyuan Wang,et al.  Robust Estimators for Multipass SAR Interferometry , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[5]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[6]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[7]  Alessandro Parizzi,et al.  Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results , 2011, IEEE Geoscience and Remote Sensing Letters.

[8]  Francesco De Zan,et al.  Coherent processing of long series of SAR images , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[9]  Richard Bamler,et al.  Efficient Phase Estimation for Interferogram Stacks , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Konstantinos Papathanassiou,et al.  Multibaseline Interferometry for Natural Scatterer Characterization , 2005 .

[11]  Ramon F. Hanssen,et al.  Phase Estimation for Distributed Scatterers in InSAR Stacks Using Integer Least Squares Estimation , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Ramon F. Hanssen,et al.  Fast Statistically Homogeneous Pixel Selection for Covariance Matrix Estimation for Multitemporal InSAR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Stefano Tebaldini,et al.  SAR Calibration Aided by Permanent Scatterers , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Teng Wang,et al.  Repeat-Pass SAR Interferometry With Partially Coherent Targets , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Stefano Tebaldini,et al.  On the Exploitation of Target Statistics for SAR Interferometry Applications , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[17]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[18]  Fabio Rocca,et al.  SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  Xiaoli Ding,et al.  Hybrid Approach for Unbiased Coherence Estimation for Multitemporal InSAR , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Yang Lan,et al.  Phase Unwrapping in InSAR : A Review , 2019, IEEE Geoscience and Remote Sensing Magazine.

[21]  Xiaoli Ding,et al.  InSAR Coherence Estimation for Small Data Sets and Its Impact on Temporal Decorrelation Extraction , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[22]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[23]  B. Kampes Radar Interferometry: Persistent Scatterer Technique , 2006 .

[24]  Gianfranco Fornaro,et al.  CAESAR: An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline–Multitemporal Interferometric SAR Processing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[25]  F. V. Leijen,et al.  Persistent Scatterer Interferometry based on geodetic estimation theory , 2014 .

[26]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[27]  Stefano Tebaldini,et al.  Methods and Performances for Multi-Pass SAR Interferometry , 2010 .