Wide-range sounding of free-tropospheric water vapor with a differential-absorption lidar (DIAL) at a high-altitude station.

A differential absorption lidar (DIAL) system has been developed for the measurement of water vapor throughout the free troposphere [3 to 12 km above sea level (asl.)] with high vertical resolution varied from 50 m next to the ground to 300 m above an altitude of 10 km. The system was installed at the Schneefernerhaus high-altitude research station (2675 m asl., Zugspitze, Germany). The DIAL system is based on a tunable single-mode laser system with a high pulse energy of currently 250 mJ and a repetition rate of 20 s(-1). For lidar operation with energies typically between 100 mJ and 150 mJ and an integration time of 1000 s (10000 laser shots for both DIAL wavelengths) a vertical range of at least 10 km has been demonstrated even under dry conditions and during daytime, while daytime measurements up to 12 km have been possible under humid conditions. The system was intercompared with radiosondes, which suggests an agreement within 5% in a major part of the operating range. Further improvements are planned in the upper troposphere to approach the accuracy requirements needed in climate research.

[1]  T. Trickl,et al.  Krypton atom and testing the limits of extreme-ultraviolet tunable-laser spectroscopy , 2007 .

[2]  V. Zuev,et al.  Laser sounding of atmospheric humidity: experiment. , 1983, Applied optics.

[3]  T D Wilkerson,et al.  Water vapor differential absorption lidar development and evaluation. , 1979, Applied optics.

[4]  J. E. van der Laan,et al.  Atmospheric water vapor measurements with an infrared (10‐μm) differential‐absorption lidar system , 1976 .

[5]  Pierre H. Flamant,et al.  Lidar Monitoring of the Water Vapor Cycle in the Troposphere. , 1982 .

[6]  Thomas Trickl,et al.  A wide‐range ultraviolet lidar system for tropospheric ozone measurements: Development and application , 1994 .

[7]  David D. Turner,et al.  An analysis of satellite, radiosonde, and lidar observations of upper tropospheric water vapor from the Atmospheric Radiation Measurement Program , 2004 .

[8]  Tom Ayers,et al.  Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor. , 2004, Applied optics.

[9]  Robert Mücke,et al.  Intercontinental transport and its influence on the ozone concentrations over central Europe: Three case studies , 2003 .

[10]  Thomas Trickl,et al.  HIGH-RESOLUTION LIDAR MEASUREMENTS OF STRATOSPHERE-TROPOSPHERE EXCHANGE , 1999 .

[11]  V. Ramanathan,et al.  Tropical and global scale interactions among water vapor, atmospheric greenhouse effect, and surface temperature , 1998 .

[12]  Roy W. Spencer,et al.  How dry is the tropical free troposphere? : Implications for global warming theory , 1997 .

[13]  H. Jäger Long‐term record of lidar observations of the stratospheric aerosol layer at Garmisch‐Partenkirchen , 2005 .

[14]  A. Stohl,et al.  A textbook example of long‐range transport: Simultaneous observation of ozone maxima of stratospheric and North American origin in the free troposphere over Europe , 1999 .

[15]  David N. Whiteman,et al.  Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation , 2006 .

[16]  David N. Whiteman,et al.  A Comparison of Water Vapor Measurements Made by Raman Lidar and Radiosondes , 1995 .

[17]  Aerosol lidar ratio measurements in the framework of EARLINET , 2005 .

[18]  James C. Barnes,et al.  Development of the Lidar Atmospheric Sensing Experiment (LASE): An Advanced Airborne DIAL Instrument , 1997 .

[19]  J. Bösenberg,et al.  Injection-seeded pulsed Ti:sapphire laser with novel stabilization scheme and capability of dual-wavelength operation. , 2005, Applied optics.

[20]  J. Bösenberg,et al.  Water vapour flux profiles in the convective boundary layer , 2007 .

[21]  William B. Grant,et al.  Differential absorption lidar (DIAL) measurements from air and space , 1998 .

[22]  Holger Vömel,et al.  Middle Atmospheric Water Vapour Radiometer (MIAWARA): Validation and first results of the LAPBIAT Upper Tropospheric Lower Stratospheric Water Vapour Validation Project (LAUTLOS-WAVVAP) campaign , 2005 .

[23]  Thomas Trickl,et al.  Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment , 2000 .

[24]  A. Stohl,et al.  Forecast, observation and modelling of a deep stratospheric intrusion event over Europe , 2003 .

[25]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[26]  R. Lindzen Some Coolness Concerning Global Warming , 1990 .

[27]  J. Bösenberg A differential absorption lidar system for high resolution water vapor measurements in the troposphere , 1991 .

[28]  R. Ruedy,et al.  Simulations of the effect of a warmer climate on atmospheric humidity , 1991, Nature.

[29]  W. Elliott,et al.  On the Utility of Radiosonde Humidity Archives for climate studies , 1991 .

[30]  R. Draxler An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition , 1998 .

[31]  S. Manabe,et al.  The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming , 1999 .

[32]  Peter F. Patel-Schneider,et al.  DLP System Description , 1998, Description Logics.

[33]  M. Wirth,et al.  Water vapor heterogeneity related to tropopause folds over the North Atlantic revealed by airborne water vapor differential absorption lidar , 2005 .

[34]  W B Grant,et al.  CO(2) DIAL measurements of water vapor. , 1987, Applied optics.

[35]  Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. , 1987, Applied optics.

[36]  W B Grant,et al.  Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. , 1994, Applied optics.

[37]  John Y. N. Cho,et al.  Ubiquity of quasi-horizontal layers in the troposphere , 1999, Nature.

[38]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[39]  Isaac M. Held,et al.  A Comparison of Modeled and Observed Relationships between Interannual Variations of Water Vapor and Temperature , 1996 .

[40]  J. Harries The greenhouse Earth: A view from space , 1996 .

[41]  G. Grell,et al.  The VOTALP Mesolcina Valley Campaign 1996 – concept, background and some highlights , 2000 .

[42]  C. Kiemle,et al.  Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. , 1993, Applied optics.

[43]  Gerhard Ehret,et al.  Low stratospheric water vapor measured by an airborne DIAL , 1999 .

[44]  Klaus Ertel,et al.  Application and Development of Water Vapor DIAL Systems , 2004 .

[45]  D. Blake,et al.  Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment , 2001 .

[46]  I. Vergeiner,et al.  Valley winds and slope winds — Observations and elementary thoughts , 1987 .

[47]  K. Maischberger,et al.  Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar , 1971 .

[48]  W. R. Bosenberg,et al.  Broadly tunable, single-frequency optical parametric frequency-conversion system , 1993 .

[49]  Ponsardin,et al.  Measurements of H216O Linestrengths and Air-Induced Broadenings and Shifts in the 815-nm Spectral Region , 1997, Journal of molecular spectroscopy.

[50]  Christian Mätzler,et al.  Tropospheric water and temperature retrieval for ASMUWARA , 2006 .

[51]  Paul Hartogh,et al.  Ground-based detection of middle atmospheric water vapor , 1995, Remote Sensing.

[52]  A. Kung Regenerative amplification of a single-frequency optical parametric oscillator. , 1993, Optics letters.

[53]  T. Trickl,et al.  Highlights of the tropospheric lidar studies at IFU within the TOR project , 2002 .

[54]  J. Bösenberg,et al.  Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications. , 1998, Applied optics.

[55]  Holger Vömel,et al.  Radiation Dry Bias of the Vaisala RS92 Humidity Sensor , 2007 .

[56]  John E. Harries,et al.  Atmospheric radiation and atmospheric humidity , 1997 .

[57]  J. Bösenberg,et al.  Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. , 1998, Applied optics.

[58]  Mark Lawrence,et al.  On the background photochemistry of tropospheric ozone , 1999 .

[59]  J. B. DeWolf,et al.  Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air , 1968 .

[60]  N. S. Higdon,et al.  LASE Validation Experiment , 1997 .

[61]  Benjamin Kirtman,et al.  Tropospheric Water Vapor and Climate Sensitivity , 1999 .

[62]  E. Ray,et al.  Hydration of the upper troposphere by tropical cyclones , 2007 .

[63]  Frank S. Marzano,et al.  Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC , 2006 .

[64]  John A. Pyle,et al.  Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview , 1998 .

[65]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[66]  C. Kiemle,et al.  Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy , 2002 .

[67]  T. Trickl,et al.  Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies. , 2005, Applied optics.

[68]  Paul Racette,et al.  Profiling of atmospheric water vapor with MIR and LASE , 2013, IEEE Trans. Geosci. Remote. Sens..

[69]  Sun and water in the greenhouse , 1991, Nature.

[70]  Darren L. Jackson,et al.  Variability of tropical upper tropospheric humidity 1979–1998 , 2001 .

[71]  A. Stohl,et al.  A Cautionary Note on the Use of Meteorological Analysis Fields for Quantifying Atmospheric Mixing , 2004 .

[72]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[73]  A. Hoffstädt Design and performance of a high-average-power flashlamp-pumped Ti:Sapphire laser and amplifier , 1997 .

[74]  Ulla Wandinger,et al.  Transport of boreal forest fire emissions from Canada , 2001 .