Linked Nickel Oxide/Perovskite Interface Passivation for High‐Performance Textured Monolithic Tandem Solar Cells

Sputtered nickel oxide (NiOx) is an attractive hole‐transport layer for efficient, stable, and large‐area p‐i‐n metal‐halide perovskite solar cells (PSCs). However, surface traps and undesirable chemical reactions at the NiOx/perovskite interface are limiting the performance of NiOx‐based PSCs. To address these issues simultaneously, an efficient NiOx/perovskite interface passivation strategy by using an organometallic dye molecule (N719) is reported. This molecule concurrently passivates NiOx and perovskite surface traps, and facilitates charge transport. Consequently, the power conversion efficiency (PCE) of single‐junction p‐i‐n PSCs increases from 17.3% to 20.4% (the highest reported value for sputtered‐NiOx based PSCs). Notably, the N719 molecule self‐anchors and conformally covers NiOx films deposited on complex surfaces. This enables highly efficient textured monolithic p‐i‐n perovskite/silicon tandem solar cells, reaching PCEs up to 26.2% (23.5% without dye passivation) with a high processing yield. The N719 layer also forms a barrier that prevents undesirable chemical reactions at the NiOx/perovskite interface, significantly improving device stability. These findings provide critical insights for improved passivation of the NiOx/perovskite interface, and the fabrication of highly efficient, robust, and large‐area perovskite‐based optoelectronic devices.

[1]  Furkan H. Isikgor,et al.  Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation , 2021 .

[2]  T. Miyasaka,et al.  Passivation of Bulk and Interface Defects in Sputtered-NiOx-Based Planar Perovskite Solar Cells: A Facile Interfacial Engineering Strategy with Alkali Metal Halide Salts , 2021 .

[3]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[4]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[5]  Thomas G. Allen,et al.  Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering , 2021 .

[6]  Xingwang Zhang,et al.  Nickel oxide for inverted structure perovskite solar cells , 2021, Journal of Energy Chemistry.

[7]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[8]  M. Green,et al.  Solar cell efficiency tables (version 57) , 2020, Progress in Photovoltaics: Research and Applications.

[9]  Furkan H. Isikgor,et al.  Scaling-up perovskite solar cells on hydrophobic surfaces , 2020 .

[10]  Qi Chen,et al.  Interfacial Dipole in Organic and Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[11]  M. Salvador,et al.  Interplay between temperature and bandgap energies on the outdoor performance of perovskite/silicon tandem solar cells , 2020, Nature Energy.

[12]  Furkan H. Isikgor,et al.  Recombination junctions for efficient monolithic perovskite-based tandem solar cells: physical principles, properties, processing and prospects , 2020 .

[13]  G. Boschloo,et al.  2-Terminal CIGS-perovskite tandem cells: A layer by layer exploration , 2020 .

[14]  Zhengshan J. Yu,et al.  Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells , 2020 .

[15]  P. Blom,et al.  Space-charge-limited electron and hole currents in hybrid organic-inorganic perovskites , 2020, Nature Communications.

[16]  Furkan H. Isikgor,et al.  High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating , 2020 .

[17]  A. Abate,et al.  Progress, highlights and perspectives on NiO in perovskite photovoltaics , 2020, Chemical science.

[18]  Thomas G. Allen,et al.  Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon , 2020, Science.

[19]  Peng Zhang,et al.  High Electron Affinity Enables Fast Hole Extraction for Efficient Flexible Inverted Perovskite Solar Cells , 2020, Advanced Energy Materials.

[20]  G. Fang,et al.  Interface modification of sputtered NiOx as the hole-transporting layer for efficient inverted planar perovskite solar cells , 2020, Journal of Materials Chemistry C.

[21]  Yongli Gao,et al.  Reducing Surface Halide Deficiency for Efficient and Stable Iodide-Based Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[22]  W. Shen,et al.  High efficiency perovskite solar cells with tailorable surface wettability by surfactant , 2020 .

[23]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[24]  A. Jen,et al.  Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base , 2020, Nature Communications.

[25]  Sumei Huang,et al.  High efficiency and stability of inverted perovskite solar cells using phenethyl ammonium iodide modified interface of NiOx and perovskite layers. , 2019, ACS applied materials & interfaces.

[26]  G. Santana,et al.  N719 Derivatives for Application in a Dye-Sensitized Solar Cell (DSSC): A Theoretical Study. , 2019, The journal of physical chemistry. A.

[27]  S. Weber,et al.  Extremely robust gas quenching deposition of halide perovskites on top of hydrophobic hole transport materials for inverted (p-i-n) solar cells by targeting the precursor wetting issue. , 2019, ACS applied materials & interfaces.

[28]  Xiaoyang Liu,et al.  Modulation of Ni3+ and crystallization of dopant-free NiOx hole transporting layer for efficient p-i-n perovskite solar cells , 2019, Electrochimica Acta.

[29]  Thomas G. Allen,et al.  Passivating contacts for crystalline silicon solar cells , 2019, Nature Energy.

[30]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[31]  S. Cheung,et al.  Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells , 2019, Nano Energy.

[32]  S. De Wolf,et al.  Defect and Contact Passivation for Perovskite Solar Cells , 2019, Advanced materials.

[33]  B. Rech,et al.  21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se2 Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces , 2019, ACS Energy Letters.

[34]  Zhengshan J. Yu,et al.  Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4% , 2019, Joule.

[35]  A. Manthiram,et al.  Highly Solvating Electrolytes for Lithium–Sulfur Batteries , 2018, Advanced energy materials.

[36]  R. Friend,et al.  In Situ Atmospheric Deposition of Ultrasmooth Nickel Oxide for Efficient Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[37]  J. Troughton,et al.  Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells , 2018, ACS Applied Energy Materials.

[38]  Y. Hao,et al.  High‐Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion‐Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20% , 2018 .

[39]  D. Sacchetto,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[40]  A. Djurišić,et al.  Molecule‐Doped Nickel Oxide: Verified Charge Transfer and Planar Inverted Mixed Cation Perovskite Solar Cell , 2018, Advanced materials.

[41]  Xiaofeng Wang,et al.  Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[42]  M. Wong,et al.  Overcoming the Limitations of Sputtered Nickel Oxide for High‐Efficiency and Large‐Area Perovskite Solar Cells , 2017, Advanced science.

[43]  A. Djurišić,et al.  Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells , 2017 .

[44]  A. Jen,et al.  A copper-doped nickel oxide bilayer for enhancing efficiency and stability of hysteresis-free inverted mesoporous perovskite solar cells , 2017 .

[45]  Yang Yang,et al.  The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. , 2017, Nano letters.

[46]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[47]  S. Priya,et al.  Scaling of the flexible dye sensitized solar cell module , 2016 .

[48]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[49]  Furkan H. Isikgor,et al.  High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA1−xFAxPbI3−yCly , 2016 .

[50]  Henk J. Bolink,et al.  Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging , 2016 .

[51]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[52]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[53]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[54]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[55]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[56]  Gary Hodes,et al.  Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[57]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[58]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[59]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[60]  F. Zamborini,et al.  Spectroscopic investigation of photoinduced charge-transfer processes in FTO/TiO2/N719 photoanodes with and without covalent attachment through silane-based linkers. , 2013, The journal of physical chemistry. A.

[61]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[62]  M. Kondo,et al.  Boron-doped a-Si:H∕c-Si interface passivation: Degradation mechanism , 2007 .

[63]  C. Ballif,et al.  Palliating the efficiency loss due to shunting in perovskite/silicon tandem solar cells through modifying the resistive properties of the recombination junction , 2021 .