Performance Comparison of Rock Detection Algorithms for Autonomous Planetary Geology

Detecting rocks in images is a valuable capability for autonomous planetary science. Rock detection facilitates selective data collection and return. It also assists with image analysis on Earth. This work reviews seven rock detection algorithms from the autonomous science literature. We evaluate each algorithm with respect to several autonomous geology applications. Tests show the algorithms' performance on Mars Exploration Rover imagery, terrestrial images from analog environments, and synthetic images from a Mars terrain simulator. This provides insight into the detectors' performance under different imaging conditions.

[1]  Tara Estlin,et al.  Rover traverse science for increased mission science return , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[2]  R. Castano,et al.  Current results from a rover science data analysis system , 2005, 2005 IEEE Aerospace Conference.

[3]  K. Wagstaff,et al.  Science-based Region-of-Interest Image Compression , 2004 .

[4]  Martial Hebert,et al.  Robotic rock classification and autonomous exploration , 2001 .

[5]  M. Judd,et al.  Intensity-based Rock Detection for Acquiring Onboard Rover Science , 2004 .

[6]  William Whittaker,et al.  The Science Autonomy System of the Nomad robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  A. Jain,et al.  Recent developments in the ROAMS planetary rover simulation environment , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[8]  David R. Thompson,et al.  Data Mining During Rover Traverse: From Images to Geologic Signatures , 2005 .

[9]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  E. Mjolsness,et al.  AUTONOMOUS ROCK DETECTION FOR MARS TERRAIN , 2001 .

[11]  R. Castano,et al.  Onboard Autonomous Rover Science , 2007, 2007 IEEE Aerospace Conference.

[12]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[13]  R.C. Anderson,et al.  Onboard autonomous rock shape analysis for Mars rovers , 2002, Proceedings, IEEE Aerospace Conference.

[14]  Mark A. Ruzon,et al.  Autonomous image analyses during the 1999 Marsokhod rover field test , 2001 .

[15]  R. Castano,et al.  Creation and testing of an artificial neural network based carbonate detector for Mars rovers , 2005, 2005 IEEE Aerospace Conference.