Diversity and Evolution of Frog Visual Opsins: Spectral Tuning and Adaptation to Distinct Light Environments

Abstract Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.

[1]  Ryan K. Schott,et al.  Convergent evolution of dim light vision in owls and deep-diving whales , 2023, Current Biology.

[2]  P. Holland,et al.  Opsin Gene Duplication in Lepidoptera: Retrotransposition, Sex Linkage, and Gene Expression , 2023, bioRxiv.

[3]  Alastair J. Ludington,et al.  Functional Duplication of the Short-Wavelength-Sensitive Opsin in Sea Snakes: Evidence for Reexpanded Color Sensitivity Following Ancestral Regression , 2023, Genome biology and evolution.

[4]  Lawrence H. Uricchio,et al.  Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs , 2023, bioRxiv.

[5]  B. Chang,et al.  Adaptation of Antarctic Icefish Vision to Extreme Environments , 2023, Molecular biology and evolution.

[6]  Troy J. Pells,et al.  Xenbase: key features and resources of the Xenopus model organism knowledgebase , 2023, Genetics.

[7]  Ryan K. Schott,et al.  Ocular lens morphology is influenced by ecology and metamorphosis in frogs and toads , 2022, Proceedings of the Royal Society B.

[8]  Ryan K. Schott,et al.  Molecular evolution of non-visual opsin genes across environmental, developmental, and morphological adaptations in frogs , 2022, bioRxiv.

[9]  R. Johnston,et al.  The evolutionary history and spectral tuning of vertebrate visual opsins. , 2022, Developmental biology.

[10]  D. Ventura,et al.  Genetic characterization of the visual pigments of the red-eared turtle (Trachemys scripta elegans) and computational predictions of the spectral sensitivity , 2022, Journal of Photochemistry and Photobiology.

[11]  Ryan K. Schott,et al.  Transcriptomic evidence for visual adaptation during the aquatic to terrestrial metamorphosis in leopard frogs , 2022, BMC Biology.

[12]  E. Loew,et al.  Vision in dim light and the evolution of color pattern in a crepuscular/nocturnal frog , 2022, Evolutionary Ecology.

[13]  Ryan K. Schott,et al.  Ecology drives patterns of spectral transmission in the ocular lenses of frogs and salamanders , 2022, Functional Ecology.

[14]  Ryan K. Schott,et al.  Evolutionary analyses of visual opsin genes in frogs and toads: Diversity, duplication, and positive selection , 2022, Ecology and evolution.

[15]  L. Peichl,et al.  Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake , 2021, Genome biology and evolution.

[16]  D. Ventura,et al.  Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes , 2021, bioRxiv.

[17]  Ryan K. Schott,et al.  Diversity and evolution of amphibian pupil shapes , 2021, bioRxiv.

[18]  W. Salzburger,et al.  The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. , 2021, Annual review of cell and developmental biology.

[19]  G. Liang,et al.  The evolution of opsin genes in five species of mirid bugs: duplication of long-wavelength opsins and loss of blue-sensitive opsins , 2021, BMC ecology and evolution.

[20]  Ryan K. Schott,et al.  Evolution, inactivation and loss of short wavelength‐sensitive opsin genes during the diversification of Neotropical cichlids , 2021, Molecular ecology.

[21]  B. Chang,et al.  Recreated Ancestral Opsin Associated with Marine to Freshwater Croaker Invasion Reveals Kinetic and Spectral Adaptation , 2021, Molecular biology and evolution.

[22]  Ryan K. Schott,et al.  Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology , 2020, Proceedings of the Royal Society B.

[23]  Ryan K. Schott,et al.  The tuatara genome reveals ancient features of amniote evolution , 2020, Nature.

[24]  R. Hanel,et al.  Visual Gene Expression Reveals a cone-to-rod Developmental Progression in Deep-Sea Fishes , 2020, bioRxiv.

[25]  K. Donner,et al.  A frog's eye view: Foundational revelations and future promises. , 2020, Seminars in cell & developmental biology.

[26]  N. Marshall,et al.  Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes , 2020, Journal of Experimental Biology.

[27]  A. Kelber,et al.  Lens transmittance shapes ultraviolet sensitivity in the eyes of frogs from diverse ecological and phylogenetic backgrounds , 2020, Proceedings of the Royal Society B.

[28]  Ryan K. Schott,et al.  Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes , 2019, Evolution; international journal of organic evolution.

[29]  R. Nielsen,et al.  The genomics of mimicry: gene expression throughout development provides insights into convergent and divergent phenotypes in a Müllerian mimicry system , 2019, bioRxiv.

[30]  A. Kelber,et al.  Differences in ocular media transmittance in classical frog and toad model species and its impact on visual sensitivity , 2019, Journal of Experimental Biology.

[31]  Gianni M. Castiglione,et al.  Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision , 2018, eLife.

[32]  Ryan K. Schott,et al.  Functional Shifts in Bat Dim-Light Visual Pigment Are Associated with Differing Echolocation Abilities and Reveal Molecular Adaptation to Photic-Limited Environments , 2018, Molecular biology and evolution.

[33]  Ryan K. Schott,et al.  Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim‐Light Ancestry , 2018, Molecular biology and evolution.

[34]  Ryan K. Schott,et al.  The role of ecological factors in shaping bat cone opsin evolution , 2018, Proceedings of the Royal Society B: Biological Sciences.

[35]  W. Jetz,et al.  The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life , 2018, Nature Ecology & Evolution.

[36]  A. J. Crawford,et al.  Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. , 2018, Molecular phylogenetics and evolution.

[37]  M. Neitz,et al.  Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes , 2017, BMC Evolutionary Biology.

[38]  M. Chikina,et al.  Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling , 2017, eLife.

[39]  Ryan K. Schott,et al.  Accelerated Evolution and Functional Divergence of the DimLight Visual Pigment Accompanies Cichlid Colonization ofCentral America , 2017, Molecular biology and evolution.

[40]  Samantha R Anderson,et al.  Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates , 2017, Evolution; international journal of organic evolution.

[41]  O. L. Moritz,et al.  Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9 , 2017, Scientific Reports.

[42]  D. Wake,et al.  Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary , 2017, Proceedings of the National Academy of Sciences.

[43]  Ryan K. Schott,et al.  Evolution of nonspectral rhodopsin function at high altitudes , 2017, Proceedings of the National Academy of Sciences.

[44]  Keiichi Kojima,et al.  Adaptation of cone pigments found in green rods for scotopic vision through a single amino acid mutation , 2017, Proceedings of the National Academy of Sciences.

[45]  Livia S. Carvalho,et al.  The Genetic and Evolutionary Drives behind Primate Color Vision , 2017, Front. Ecol. Evol..

[46]  E. Pugh,et al.  Bright flash response recovery of mammalian rods in vivo is rate limited by RGS9 , 2017, The Journal of general physiology.

[47]  B. Chang,et al.  Epistatic interactions influence terrestrial–marine functional shifts in cetacean rhodopsin , 2017, Proceedings of the Royal Society B: Biological Sciences.

[48]  Ryan K. Schott,et al.  Targeted Capture of Complete Coding Regions across Divergent Species , 2017, bioRxiv.

[49]  Kevin A. Burns,et al.  Genome evolution in the allotetraploid frog Xenopus laevis , 2016, Nature.

[50]  E. Hadly,et al.  Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors , 2016, Scientific Reports.

[51]  R. Douglas,et al.  Visual Pigments, Ocular Filters and the Evolution of Snake Vision. , 2016, Molecular biology and evolution.

[52]  T. Lamb,et al.  Evolution of Vertebrate Phototransduction: Cascade Activation , 2016, Molecular biology and evolution.

[53]  D. Wildman,et al.  Functional Divergence of the Nuclear Receptor NR2C1 as a Modulator of Pluripotentiality During Hominid Evolution , 2016, Genetics.

[54]  M. Théry,et al.  Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata , 2016, Evolutionary Biology.

[55]  B. Chang,et al.  Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment. , 2016, Molecular biology and evolution.

[56]  Ryan K. Schott,et al.  Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake , 2015, Proceedings of the National Academy of Sciences.

[57]  Stephen L. Johnson,et al.  Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2 , 2015, Current Biology.

[58]  A. Meyer,et al.  Ecological and Lineage-Specific Factors Drive the Molecular Evolution of Rhodopsin in Cichlid Fishes. , 2015, Molecular biology and evolution.

[59]  Martin Stevens,et al.  Visual Ecology , 2015 .

[60]  M. E. Burns,et al.  Speeding rod recovery improves temporal resolution in the retina , 2015, Vision Research.

[61]  Ben Murrell,et al.  Gene-wide identification of episodic selection. , 2015, Molecular biology and evolution.

[62]  Natasha I. Bloch,et al.  SWS2 visual pigment evolution as a test of historically contingent patterns of plumage color evolution in Warblers , 2015, bioRxiv.

[63]  Ben Murrell,et al.  RELAX: detecting relaxed selection in a phylogenetic framework. , 2014, Molecular biology and evolution.

[64]  Huanming Yang,et al.  Genomic Takeover by Transposable Elements in the Strawberry Poison Frog , 2014, Molecular biology and evolution.

[65]  M. Springer,et al.  Eyes underground: regression of visual protein networks in subterranean mammals. , 2014, Molecular phylogenetics and evolution.

[66]  T. Reuter,et al.  Why do green rods of frog and toad retinas look green? , 2014, Journal of Comparative Physiology A.

[67]  C. Makino,et al.  Coexpression of three opsins in cone photoreceptors of the salamander Ambystoma tigrinum , 2014, The Journal of comparative neurology.

[68]  Ryan K. Schott,et al.  Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. , 2014, Molecular biology and evolution.

[69]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[70]  V. Govardovskii,et al.  Photoreceptors and visual pigments in three species of newts , 2013, Journal of Evolutionary Biochemistry and Physiology.

[71]  M. Springer,et al.  Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins , 2013, PLoS genetics.

[72]  Deborah A. Bolnick,et al.  Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. , 2013, Molecular biology and evolution.

[73]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[74]  J. M. Morrow,et al.  Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal , 2012, Visual Neuroscience.

[75]  D. Hunt,et al.  Molecular ecology and adaptation of visual photopigments in craniates , 2012, Molecular ecology.

[76]  B. Chang,et al.  An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. , 2012, Molecular biology and evolution.

[77]  M. Land,et al.  Lens eyes on land , 2012 .

[78]  A. Pyron,et al.  A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. , 2011, Molecular phylogenetics and evolution.

[79]  Sergei L. Kosakovsky Pond,et al.  A random effects branch-site model for detecting episodic diversifying selection. , 2011, Molecular biology and evolution.

[80]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[81]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[82]  J. Bowmaker,et al.  Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes , 2010, Journal of Experimental Biology.

[83]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[84]  N. Okada,et al.  Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation. , 2010, Molecular biology and evolution.

[85]  M. Vorobyev,et al.  Visual ecology of the Australian lungfish (Neoceratodus forsteri) , 2008, BMC Ecology.

[86]  Huan Zhang,et al.  Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates , 2008, Proceedings of the National Academy of Sciences.

[87]  S. Yokoyama Evolution of dim-light and color vision pigments. , 2008, Annual review of genomics and human genetics.

[88]  D. Hunt,et al.  Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus) , 2008, Proceedings of the Royal Society B: Biological Sciences.

[89]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[90]  N. Blow,et al.  A novel spectral tuning in the short wavelength-sensitive (SWS1 and SWS2) pigments of bluefin killifish (Lucania goodei). , 2007, Gene.

[91]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[92]  Sylvain Gatti,et al.  Evolution of vertebrate visual pigments , 2006, Current Biology.

[93]  S. Yokoyama,et al.  Genetic Basis of Spectral Tuning in the Violet-Sensitive Visual Pigment of African Clawed Frog, Xenopus laevis , 2005, Genetics.

[94]  Naomi Takenaka,et al.  Elephants and Human Color-Blind Deuteranopes Have Identical Sets of Visual Pigments Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY686752, AY686753, AY686754. , 2005, Genetics.

[95]  Sergei L. Kosakovsky Pond,et al.  A genetic algorithm approach to detecting lineage-specific variation in selection pressure. , 2005, Molecular biology and evolution.

[96]  Ziheng Yang,et al.  A Maximum Likelihood Method for Detecting Functional Divergence at Individual Codon Sites, with Application to Gene Family Evolution , 2004, Journal of Molecular Evolution.

[97]  K. Summers,et al.  Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio , 2004, Journal of Experimental Biology.

[98]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[99]  Jian-xing Ma,et al.  A novel Xenopus SWS2, P434 visual pigment: structure, cellular location, and spectral analyses. , 2003, Molecular vision.

[100]  J. Bowmaker,et al.  The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.

[101]  R. Foster,et al.  Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. , 2002, Journal of Experimental Biology.

[102]  D. Oprian,et al.  A Visual Pigment Expressed in Both Rod and Cone Photoreceptors , 2001, Neuron.

[103]  D M Hunt,et al.  The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. , 2001, The Journal of experimental biology.

[104]  Y. Tsukahara,et al.  Distribution of blue‐sensitive photoreceptors in amphibian retinas , 2001, FEBS letters.

[105]  S. Yokoyama,et al.  Genetics and evolution of ultraviolet vision in vertebrates , 2000, FEBS letters.

[106]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[107]  Y. Tsukahara,et al.  Primary structure of a visual pigment in bullfrog green rods , 1999, FEBS letters.

[108]  B. Knox,et al.  Cloning and expression of a Xenopus short wavelength cone pigment. , 1998, Experimental eye research.

[109]  F. Tokunaga,et al.  Primary structure and characterization of a bullfrog visual pigment contained in small single cones. , 1998, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[110]  S. Moody,et al.  Characterization of the Xenopus Rhodopsin Gene (*) , 1996, The Journal of Biological Chemistry.

[111]  K. Donner,et al.  Spectral sensitivities of short- and long-wavelength sensitive cone mechanisms in the frog retina. , 1994, Acta physiologica Scandinavica.

[112]  E. Loew A third, ultraviolet-sensitive, visual pigment in the Tokay gecko (Gekko gekko) , 1994, Vision Research.

[113]  D. Oprian,et al.  Molecular determinants of human red/green color discrimination , 1994, Neuron.

[114]  J. Jeanny,et al.  Presence and foveal enrichment of rod opsin in the “all cone” retina of the American chameleon , 1993, The Anatomical record.

[115]  J. Douglass,et al.  Scotopic spectral sensitivity of the optomotor response in the green treefrog Hyla cinerea. , 1993, The Journal of experimental zoology.

[116]  T. Sakmar,et al.  Introduction of hydroxyl-bearing amino acids causes bathochromic spectral shifts in rhodopsin. Amino acid substitutions responsible for red-green color pigment spectral tuning. , 1992, The Journal of biological chemistry.

[117]  E. MacNichol A unifying presentation of photopigment spectra , 1986, Vision Research.

[118]  F. I. Hárosi Recent results from single‐cell microspectrophotometry: Cone pigments in frog, fish, and monkey , 1982 .

[119]  G. Entine,et al.  Visual pigments of frog and tadpole (Rana pipiens). , 1968, Vision research.

[120]  D. Richman,et al.  FUBAR: A Fast, Unconstrained Bayesian AppRoximation for Inferring Selection , 2014 .

[121]  Visual Signaling in Anuran Amphibians , 2004 .

[122]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[123]  L. Trueb,et al.  Biology of Amphibians , 1986 .

[124]  D. Ingle Behavioral Correlates of Central Visual Function in Anurans , 1976 .

[125]  C. D. B. Bridges,et al.  The Rhodopsin-Porphyropsin Visual System , 1972 .

[126]  P. Liebman Microspectrophotometry of Photoreceptors , 1972 .

[127]  S. Frost,et al.  Bioinformatics Applications Note Sequence Analysis Datamonkey 2010: a Suite of Phylogenetic Analysis Tools for Evolutionary Biology , 2022 .