Strong edge-coloring for cubic Halin graphs

A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the strong chromatic index of G. Lih and Liu (2011) [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open problem to determine which of such graphs have strong chromatic index 6. Our article is devoted to this open problem. In particular, we disprove a conjecture of Shiu et al. (2006) [18] that the strong chromatic index of a cubic Halin graph with characteristic tree a caterpillar of odd leaves is 6.

[1]  Daniel W. Cranston Strong edge-coloring of graphs with maximum degree 4 using 22 colors , 2006, Discret. Math..

[2]  William T. Trotter,et al.  Induced matchings in cubic graphs , 1993, J. Graph Theory.

[3]  Lars D@vling Andersen The strong chromatic index of a cubic graph is at most 10 , 1992, Discret. Math..

[4]  Paul Erdös,et al.  Problems and results in combinatorial analysis and graph theory , 1988, Discret. Math..

[5]  Mohammad Mahdian On the computational complexity of strong edge coloring , 2002, Discret. Appl. Math..

[6]  Moshe Lewenstein,et al.  New results on induced matchings , 2000, Discret. Appl. Math..

[7]  Angelika Steger,et al.  On induced matchings , 1993, Discret. Math..

[8]  Richard A. Brualdi,et al.  Incidence and strong edge colorings of graphs , 1993, Discret. Math..

[9]  Wai Chee Shiu,et al.  The strong chromatic index of complete cubic Halin graphs , 2009, Appl. Math. Lett..

[10]  Ko-Wei Lih,et al.  The strong chromatic index of Halin graphs , 2012, Discret. Math..

[11]  Wensong Lin,et al.  The strong chromatic index of a class of graphs , 2008, Discret. Math..

[12]  Mohammad Mahdian,et al.  The strong chromatic index of graphs , 2000 .

[13]  Maksim Maydanskiy The incidence coloring conjecture for graphs of maximum degree 3 , 2005, Discret. Math..

[14]  Mohammad R. Salavatipour A polynomial time algorithm for strong edge coloring of partial k-trees , 2004, Discret. Appl. Math..

[15]  Lars Døvling Anderson The strong chromatic index of a cubic graph is at most 10 , 1992 .

[16]  V. Sós,et al.  Irregularities of partitions , 1989 .

[17]  Ko-Wei Lih,et al.  On the strong chromatic index of cubic Halin graphs , 2012, Appl. Math. Lett..

[18]  Jessica Engel,et al.  Problem , 1902 .