Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum

[1]  D. Kang,et al.  Quantitative Proteogenomics and the Reconstruction of the Metabolic Pathway in Lactobacillus mucosae LM1 , 2015, Korean journal for food science of animal resources.

[2]  K. Mountzouris,et al.  Evaluation of yeast dietary supplementation in broilers challenged or not with Salmonella on growth performance, cecal microbiota composition and Salmonella in ceca, cloacae and carcass skin. , 2015, Poultry science.

[3]  A. Moya,et al.  Colonization Resistance of the Gut Microbiota against Clostridium difficile , 2015, Antibiotics.

[4]  M. W. Taylor,et al.  Exploring the avian gut microbiota: current trends and future directions , 2015, Front. Microbiol..

[5]  J. H. Park,et al.  The effects of the supplementation of Bacillus subtilis RX7 and B2A strains on the performance, blood profiles, intestinal Salmonella concentration, noxious gas emission, organ weight and breast meat quality of broiler challenged with Salmonella typhimurium. , 2015, Journal of animal physiology and animal nutrition.

[6]  D. Kang,et al.  Effects of probiotic Enterococcus faecium NCIMB 11181 administration on swine fecal microbiota diversity and composition using barcoded pyrosequencing , 2015 .

[7]  H. Gan,et al.  Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses , 2015, Gut Pathogens.

[8]  D. Kang,et al.  Barcoded pyrosequencing-based metagenomic analysis of the faecal microbiome of three purebred pig lines after cohabitation , 2015, Applied Microbiology and Biotechnology.

[9]  H. Lillehoj,et al.  The chicken gastrointestinal microbiome. , 2014, FEMS microbiology letters.

[10]  L. Ursell,et al.  Glycan Degradation (GlyDeR) Analysis Predicts Mammalian Gut Microbiota Abundance and Host Diet-Specific Adaptations , 2014, mBio.

[11]  C. Constantinidou,et al.  Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome , 2014, PloS one.

[12]  D. Stanley,et al.  Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease , 2014, Applied Microbiology and Biotechnology.

[13]  L. Jespersen,et al.  Characterization of Bacillus spp. strains for use as probiotic additives in pig feed , 2014, Applied Microbiology and Biotechnology.

[14]  I. Rychlik,et al.  Influence of Salmonella enterica serovar Enteritidis infection on the composition of chicken cecal microbiota , 2013, BMC Veterinary Research.

[15]  Rybal'chenko Ov,et al.  Antimicrobial peptides of lactobacilli , 2013 .

[16]  Young-Mo Kim,et al.  A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection , 2013, PloS one.

[17]  K. Stejskal,et al.  Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis , 2013, Veterinary Research.

[18]  I. Rychlik,et al.  Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin , 2013, BMC Veterinary Research.

[19]  D. Kang,et al.  Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. , 2013, Journal of proteome research.

[20]  V. M. Bondarenko,et al.  [Antimicrobial peptides of lactobacilli]. , 2013, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.

[21]  S. Leeson Future considerations in poultry nutrition. , 2012, Poultry science.

[22]  N. Goldenfeld,et al.  The microbiome of the chicken gastrointestinal tract , 2012, Animal Health Research Reviews.

[23]  J. Nakayama,et al.  The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens. , 2011, Poultry science.

[24]  Thibaut Jombart,et al.  adegenet 1.3-1: new tools for the analysis of genome-wide SNP data , 2011, Bioinform..

[25]  Steven C. Ricke,et al.  Population Dynamics of Salmonella enterica Serotypes in Commercial Egg and Poultry Production , 2011, Applied and Environmental Microbiology.

[26]  K. Nelson,et al.  Draft Genome Sequence of Turicibacter sanguinis PC909, Isolated from Human Feces , 2010, Journal of bacteriology.

[27]  Daniel B. Oerther,et al.  Comparative fecal metagenomics unveils unique functional capacity of the swine gut , 2011, BMC Microbiology.

[28]  B. Finlay,et al.  Salmonella SPI-1-mediated neutrophil recruitment during enteric colitis is associated with reduction and alteration in intestinal microbiota , 2010, Gut microbes.

[29]  N. Salzman,et al.  Enteric Salmonellosis Disrupts the Microbial Ecology of the Murine Gastrointestinal Tract , 2007, Infection and Immunity.

[30]  G. Dougan,et al.  Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota , 2007, PLoS biology.

[31]  R. Zbinden,et al.  Turicibacter sanguinis gen. nov., sp. nov., a novel anaerobic, Gram-positive bacterium. , 2002, International journal of systematic and evolutionary microbiology.