Artificial neural networks for selection of pulsar candidates from radio continuum surveys
暂无分享,去创建一个
Keitaro Takahashi | Hiroki Kumamoto | Naoyuki Yonemaru | Shi Dai | Shintaro Yoshiura | Shinsuke Ideguchi | S. Dai | Keitaro Takahashi | S. Ideguchi | S. Yoshiura | H. Kumamoto | N. Yonemaru | Naoyuki Yonemaru
[1] A. Fontana,et al. Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS , 2003, astro-ph/0312064.
[2] R. Manchester,et al. The ATNF Pulsar Catalogue , 2003, astro-ph/0309219.
[3] D. Frail,et al. A radio spectral index map and catalogue at 147-1400 MHz covering 80 per cent of the sky , 2017, 1711.11367.
[4] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[5] R. N. Manchester,et al. Tests of General Relativity from Timing the Double Pulsar , 2006, Science.
[6] F. Camilo,et al. The Parkes multi-beam pulsar survey - I. Observing and data analysis systems, discovery and timing of 100 pulsars , 2001, astro-ph/0106522.
[7] R. P. Eatough,et al. Selection of radio pulsar candidates using artificial neural networks , 2010, 1005.5068.
[8] Joeri van Leeuwen,et al. Applying Deep Learning to Fast Radio Burst Classification , 2018, The Astronomical Journal.
[9] D. Stinebring,et al. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.
[10] A. J. Faulkner,et al. Pulsar searches and timing with the square kilometre array , 2009 .
[11] Hui Zhang,et al. Pulsar candidate selection using ensemble networks for FAST drift-scan survey , 2019, Science China Physics, Mechanics & Astronomy.
[12] Marco O. P. Sampaio,et al. Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.
[13] B. Reid,et al. Arecibo Pulsar Survey Using ALFA. I. Survey Strategy and First Discoveries , 2005, astro-ph/0509732.
[14] Steve Croft,et al. Low-Frequency Spectral Energy Distributions of Radio Pulsars Detected with the Murchison Widefield Array , 2017, Publications of the Astronomical Society of Australia.
[15] C. Lintott,et al. Galaxy Zoo: reproducing galaxy morphologies via machine learning★ , 2009, 0908.2033.
[16] et al,et al. Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.
[17] A. Hewish,et al. Observation of a Rapidly Pulsating Radio Source , 1968, Nature.
[18] E. Flesch. The Half Million Quasars (HMQ) Catalogue , 2015, Publications of the Astronomical Society of Australia.
[19] The Parkes Pulsar Timing Array Project , 2012, Publications of the Astronomical Society of Australia.
[20] O. Lahav,et al. An artificial neural network approach to the classification of galaxy spectra , 1996, astro-ph/9608073.
[21] B. C. Joshi,et al. A Search for Pulsars in Steep Spectrum Radio Sources , 2018, The Astrophysical Journal.
[22] Kurt Hornik,et al. Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.
[23] Shanoli Samui Pal,et al. Photo-$z$ with CuBAN$z$: An improved photometric redshift estimator using Clustering aided Back Propagation Neural network , 2016, 1609.03568.
[24] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[25] R. P. Eatough,et al. A Cosmic Census of Radio Pulsars with the SKA , 2014, 1501.00056.
[26] B. Semelin,et al. Analysing the 21 cm signal from the epoch of reionization with artificial neural networks , 2017, 1701.07026.
[27] A. Naim,et al. Automated morphological classification of APM galaxies by supervised artificial neural networks , 1995, astro-ph/9503001.
[28] D. Frail,et al. An image-based search for pulsars among Fermi unassociated LAT sources , 2017, 1712.06609.
[29] O. Lahav,et al. Morphological Classification of galaxies by Artificial Neural Networks , 1992 .
[30] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[31] D. Schnitzeler,et al. Modelling the Galactic distribution of free electrons , 2012, 1208.3045.
[32] C. Flynn,et al. SPINN: a straightforward machine learning solution to the pulsar candidate selection problem , 2014, 1406.3627.
[33] Geoffrey E. Hinton,et al. Learning representations by back-propagating errors , 1986, Nature.
[34] J. Han,et al. The Spatial Energy Spectrum of Magnetic Fields in Our Galaxy , 2004, astro-ph/0404221.
[35] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2005 .
[36] R. Ekers,et al. Detecting pulsars with interstellar scintillation in variance images , 2016, 1607.07740.
[37] D. Frail,et al. The GMRT 150 MHz all-sky radio survey - First alternative data release TGSS ADR1 , 2016, 1603.04368.
[38] D. A. García-Hernández,et al. University of Birmingham The Fourteenth Data Release of the Sloan Digital Sky Survey: , 2017 .
[39] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..
[40] Ping Guo,et al. Pulsar Candidate Identification with Artificial Intelligence Techniques , 2017, ArXiv.
[41] S. Desai,et al. Separation of pulsar signals from noise using supervised machine learning algorithms , 2017, Astron. Comput..
[42] J. Lattimer,et al. The Physics of Neutron Stars , 2004, Science.
[43] D. Champion,et al. The European Pulsar Timing Array and the Large European Array for Pulsars , 2013 .
[44] F. Jankowski,et al. Spectral properties of 441 radio pulsars , 2017, 1709.08864.
[45] G. Desvignes,et al. SEARCHING FOR PULSARS USING IMAGE PATTERN RECOGNITION , 2013, 1309.0776.
[46] H. Falcke,et al. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra , 2015, 1511.01767.
[47] Daniel George,et al. Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.