Computation of H ∞  controllers for infinite dimensional plants using numerical linear algebra

SUMMARY The mixed sensitivity minimization problem is revisited for a class of single-input-single-output unstable infinite dimensional plants with low order weights. It is shown that H ∞  controllers can be computed from the singularity conditions of a parameterized matrix whose dimension is the same as the order of the sensitivity weight. The result is applied to the design of H ∞  controllers with integral action. Connections with the so-called Hamiltonian approach are also established. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Hitay Özbay,et al.  Robust Control of Infinite Dimensional Systems: Frequency Domain Methods , 1996 .

[2]  Sanjoy K. Mitter,et al.  A note on essential spectra and norms of mixed Hankel-Toeplitz operators , 1988 .

[3]  Kirsten Morris H∞-output feedback of infinite-dimensional systems via approximation , 2001, Syst. Control. Lett..

[4]  L. Mirkin,et al.  H/sup /spl infin// control of systems with multiple I/O delays via decomposition to adobe problems , 2005, IEEE Transactions on Automatic Control.

[5]  Kenji Kashima,et al.  A new characterization of invariant subspaces of H2 and applications to the optimal sensitivity problem , 2005, Syst. Control. Lett..

[6]  Malcolm C. Smith Singular values and vectors of a class of Hankel operators , 1989 .

[7]  Hitay Özbay,et al.  Introduction to Feedback Control Theory , 1999 .

[8]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[9]  Tryphon T. Georgiou,et al.  Robust stabilization in the gap metric: controller design for distributed plants , 1992 .

[10]  Pramod Khargonekar,et al.  Weighted sensitivity minimization for delay systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[11]  M. Xiao,et al.  Finite-Dimensional Compensators for the H1-Optimal Control of In nite-Dimensional System Via a Galerkin-type Approximation , 1999 .

[12]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[13]  M. A. Dahleh,et al.  Weighted H/sup infinity / optimization for stable infinite dimensional systems using finite dimensional techniques , 1990, 29th IEEE Conference on Decision and Control.

[14]  Ruth F. Curtain,et al.  A weighted mixed-sensitivity H∞-control design for irrational transfer matrices , 1996, IEEE Trans. Autom. Control..

[15]  M. Kreĭn,et al.  ANALYTIC PROPERTIES OF SCHMIDT PAIRS FOR A HANKEL OPERATOR AND THE GENERALIZED SCHUR-TAKAGI PROBLEM , 1971 .

[16]  H. Dym,et al.  Explicit formulas for optimally robust controllers for delay systems , 1995, IEEE Trans. Autom. Control..

[17]  Kenji Kashima,et al.  On standard Hinfinity control problems for systems with infinitely many unstable poles , 2008, Syst. Control. Lett..

[18]  H. Bercovici On Skew Toeplitz Operators I, Operator Theory , 1988 .

[19]  Tamer Basar,et al.  Finite-Dimensional Compensators for the $H^\infty$-Optimal Control of Infinite-Dimensional Systems via a Galerkin-type Approximation , 1999 .

[20]  Kenji Kashima,et al.  A Hamiltonian-based solution to the mixed sensitivity optimization problem for stable pseudorational plants , 2005, Syst. Control. Lett..

[21]  Hitay Özbay,et al.  Tutorial review H∞ optimal controller design for a class of distributed parameter systems , 1993 .

[22]  Sanjoy K. Mitter,et al.  H Infinity Sensitivity Minimization for Delay Systems. Part 2. , 1987 .

[23]  Munther A. Dahleh,et al.  Weighted ?Im Optimization for Stable Infinite Dimensional Systems using Finite Dimensional Techniques * , 1990 .

[24]  S. Mitter,et al.  H ∞ 0E Sensitivity Minimization for Delay Systems , 1987 .

[25]  Allen Tannenbaum,et al.  A skew Toeplitz approach to the H ∞ optimal control of multivariable distributed systems , 1990 .

[26]  Hitay Özbay,et al.  ON THE TWO-BLOCK H PROBLEM FOR A CLASS OF UNSTABLE DISTRIBUTED SYSTEMS , 1996 .

[27]  Allen Tannenbaum,et al.  Mixed-sensitivity optimization for a class of unstable infinite-dimensional systems , 1993 .

[28]  Hong Yang,et al.  Optimal mixed sensitivity for SISO-distributed plants , 1994, IEEE Trans. Autom. Control..

[29]  Allen Tannenbaum,et al.  Some Explicit Formulae for the Singular Values of Certain Hankel Operators with Factorizable Symbol , 1988 .

[30]  A. Tannenbaum,et al.  Weighted sensitivity minimization: General plants in H∞ and rational weights , 1988, 26th IEEE Conference on Decision and Control.

[31]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[32]  Suat Gumussoy,et al.  On the mixed sensitivity minimization for systems with infinitely many unstable modes , 2004, Syst. Control. Lett..

[33]  Kirsten Morris,et al.  Introduction to Feedback Control , 2001 .

[34]  Onur Toker,et al.  H∞ optimal and suboptimal controllers for infinite dimensional SISO plants , 1995, IEEE Trans. Autom. Control..

[35]  Yutaka Yamamoto,et al.  Some remarks on Hamiltonians and the infinite-dimensional one block H ∞ problem , 1996 .

[36]  H. Özbay A simpler formula for the singular values of a certain Hankel operator , 1991 .

[37]  Kentaro Hirata,et al.  A Hamiltonian-based solution to the two-block H∞ problem for general plants in H∞ and rational weights , 2000 .

[38]  Suat Gumussoy,et al.  REMARKS ON H*infin; CONTROLLER DESIGN FOR SISO PLANTS WITH TIME DELAYS 1 , 2006 .

[39]  P. Khargonekar,et al.  On the weighted sensitivity minimization problem for delay systems , 1987 .