SAIL – stereo-array isotope labeling

Abstract Optimal stereospecific and regiospecific labeling of proteins with stable isotopes enhances the nuclear magnetic resonance (NMR) method for the determination of the three-dimensional protein structures in solution. Stereo-array isotope labeling (SAIL) offers sharpened lines, spectral simplification without loss of information and the ability to rapidly collect and automatically evaluate the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as before. This review gives an overview of stable isotope labeling methods for NMR spectroscopy with proteins and provides an in-depth treatment of the SAIL technology.

[1]  Ad Bax,et al.  Three-dimensional heteronuclear NMR of nitrogen-15 labeled proteins , 1989 .

[2]  L. Kay,et al.  Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins , 1992 .

[3]  Ivano Bertini,et al.  Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. , 2005, Angewandte Chemie.

[4]  K Wüthrich,et al.  TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Y. Kyōgoku,et al.  Improved segmental isotope labeling of proteins and application to a larger protein , 1999, Journal of biomolecular NMR.

[6]  R. Wetzel,et al.  Inclusion body formation and protein stability in sequence variants of interleukin-1 beta. , 1993, The Journal of biological chemistry.

[7]  Richard N. Moore,et al.  Mechanism of formation of serine β-lactones by Mitsunobu cyclization: synthesis and use of L-serine stereospecifically labelled with deuterium at C-3 , 1986 .

[8]  A. Means,et al.  NMR studies of a complex of deuterated calmodulin with melittin. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Takuya Ueda,et al.  Cell-free translation reconstituted with purified components , 2001, Nature Biotechnology.

[10]  S. Fesik,et al.  Heteronuclear three-dimensional nmr spectroscopy. A strategy for the simplification of homonuclear two-dimensional NMR spectra , 1988 .

[11]  Adbax,et al.  ‘ H-‘ H Correlation via Isotropic Mixing of 13 C Magnetization , a New Three-Dimensional Approach for Assigning lH and 13 C Spectra of 13 C-Enriched Proteins , 2004 .

[12]  P. Kane,et al.  Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. , 1990, Science.

[13]  S. Grzesiek,et al.  Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings , 2004 .

[14]  V. Dötsch,et al.  Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. , 2009, Angewandte Chemie.

[15]  Peter Güntert,et al.  Automated NMR protein structure calculation , 2003 .

[16]  M. Kainosho,et al.  Letter: Conformational analysis of amino acids and peptides using specific isotope substitution. II. Conformation of serine, tyrosine, phenylalanine, aspartic acid, asparagine, and aspartic acid beta-methyl ester in various ionization states. , 1975, Journal of the American Chemical Society.

[17]  Peter Güntert,et al.  Automated structure determination from NMR spectra , 2009, European Biophysics Journal.

[18]  M. Lang,et al.  4-hydroxy[1-13C]benzoic acid: (Benzoic-1-13C acid, 4-hydroxy-) , 2002 .

[19]  Peter Güntert,et al.  Automated protein structure determination from NMR spectra. , 2006, Journal of the American Chemical Society.

[20]  T. Torizawa,et al.  NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. , 2005, Journal of the American Chemical Society.

[21]  Ad Bax,et al.  Isotope-filtered 2D NMR of a protein-peptide complex: study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin , 1992 .

[22]  L. Kay,et al.  Three-Dimensional Heteronuclear NMR of 15 N-Labeled Proteins , 2022 .

[23]  Lewis E. Kay,et al.  Quantitative dynamics and binding studies of the 20S proteasome by NMR , 2007, Nature.

[24]  P. Güntert,et al.  Structural basis of the role of the NikA ribbon-helix-helix domain in initiating bacterial conjugation. , 2008, Journal of molecular biology.

[25]  T. Kigawa,et al.  Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis , 1995, Journal of biomolecular NMR.

[26]  L. Berliner,et al.  Structure computation and dynamics in protein NMR , 1999 .

[27]  Chunxian Cui,et al.  An efficient on‐column expressed protein ligation strategy: Application to segmental triple labeling of human apolipoprotein E3 , 2008, Protein science : a publication of the Protein Society.

[28]  D. LeMaster,et al.  Differential deuterium isotope shifts and one-bond 1H−13C scalar couplings in the conformational analysis of protein glycine residues , 1994, Journal of biomolecular NMR.

[29]  D. L. Williams,et al.  ORGANIC SYNTHESES WITH ISOTOPES. PART II. ORGANIC COMPOUNDS LABELED WITH ISOTOPES OF THE HALOGENS, HYDROGEN, NITROGEN, OXYGEN, PHOSPHORUS, AND SULFUR , 1958 .

[30]  A Medek,et al.  An approach for high-throughput structure determination of proteins by NMR spectroscopy , 2000, Journal of biomolecular NMR.

[31]  R. R. Ernst,et al.  A practical approach to three-dimensional NMR spectroscopy , 1987 .

[32]  Peter Güntert,et al.  Optimal isotope labelling for NMR protein structure determinations , 2006, Nature.

[33]  T Pawson,et al.  Selective methyl group protonation of perdeuterated proteins. , 1996, Journal of molecular biology.

[34]  R. Riek,et al.  Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[35]  V. Hruby,et al.  An efficient procedure for the demethylation of aryl-methyl ethers in optically pure unusual amino acids , 1993 .

[36]  Kurt Wüthrich,et al.  GARANT-a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra , 1997, J. Comput. Chem..

[37]  L. Lian,et al.  Labelling approaches for protein structural studies by solution-state and solid-state NMR , 2001 .

[38]  C. Dobson,et al.  Temperature dependent molecular motion of a tyrosine residue of ferrocytochrome C , 1976, FEBS letters.

[39]  K. Ogura,et al.  An improved double-tuned and isotope-filtered pulse scheme based on a pulsed field gradient and a wide-band inversion shaped pulse , 1996, Journal of biomolecular NMR.

[40]  M. Kainosho,et al.  Stable isotope labeling methods for protein NMR spectroscopy , 2008 .

[41]  Kurt Wüthrich,et al.  The second decade — into the third millenium , 1998, Nature Structural Biology.

[42]  M. Kainosho,et al.  Solution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformational changes responsible for activation. , 2001, Journal of molecular biology.

[43]  S. Homans,et al.  Improved Resolution and Sensitivity of Triple-Resonance NMR Methods for the Structural Analysis of Proteins by Use of a Backbone-Labeling Strategy , 1999 .

[44]  Yasuhiko Yoshida,et al.  Cell‐free production and stable‐isotope labeling of milligram quantities of proteins , 1999, FEBS letters.

[45]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins , 1997, Science.

[46]  C. W. Hilbers,et al.  A 13C double-filtered NOESY with strongly reduced artefacts and improved sensitivity , 1995, Journal of biomolecular NMR.

[47]  Florian C. Oberstrass,et al.  Structure of the two most C‐terminal RNA recognition motifs of PTB using segmental isotope labeling , 2006, The EMBO journal.

[48]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[49]  K. Wüthrich,et al.  Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI) , 1976, Biophysics of structure and mechanism.

[50]  R. Riek,et al.  Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Billeter,et al.  Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. , 1998, Journal of magnetic resonance.

[52]  J. Farmer,et al.  Incorporation of As , 2002 .

[53]  R. Hirata,et al.  Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.

[54]  Amalio Telenti,et al.  Crystal structure of GyrA intein from Mycobacterium xenopi reveals structural basis of protein splicing , 1998, Nature Structural Biology.

[55]  Steven E Brenner,et al.  The Impact of Structural Genomics: Expectations and Outcomes , 2005, Science.

[56]  I. Bertini,et al.  A Heteronuclear Direct‐Detection NMR Spectroscopy Experiment for Protein‐Backbone Assignment , 2004 .

[57]  Richard L. Harlow,et al.  Preparation and use of C2-symmetric bis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions , 1993 .

[58]  P. A. Spencer,et al.  A versatile synthesis of stereospecificaily labelled D-amino acids and related enzyme inhibitors , 1991 .

[59]  M. Billeter,et al.  The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules , 1996, Journal of biomolecular NMR.

[60]  P. Güntert,et al.  Evaluation of stereo‐array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA , 2006, Magnetic resonance in chemistry : MRC.

[61]  Kurt Wüthrich,et al.  The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination , 1993 .

[62]  Weontae Lee,et al.  A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity , 1994 .

[63]  G. Zubay,et al.  In vitro synthesis of protein in microbial systems. , 1973, Annual review of genetics.

[64]  M. Kainosho,et al.  Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination , 2010, Journal of biomolecular NMR.

[65]  F A Quiocho,et al.  Refined 1.8-A structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. , 1993, Biochemistry.

[66]  B. Hames,et al.  Transcription and translation : a practical approach , 1984 .

[67]  A. Bax,et al.  Optimized recording of heteronuclear multidimensional NMR spectra using pulsed field gradients , 1992 .

[68]  Lysis of Escherichia coli by induction of cloned phi X174 genes. , 1982, Molecular & general genetics : MGG.

[69]  M. Wittekind,et al.  HNCACB, a High-Sensitivity 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha- and Beta-Carbon Resonances in Proteins , 1993 .

[70]  G. Marius Clore,et al.  1H1H correlation via isotropic mixing of 13C magnetization, a new three-dimensional approach for assigning 1H and 13C spectra of 13C-enriched proteins , 1990 .

[71]  E. Laue,et al.  A novel method for the biosynthesis of deuterated proteins with selective protonation at the aromatic rings of Phe, Tyr and Trp , 2003, Journal of biomolecular NMR.

[72]  F. Dahlquist,et al.  Biosynthetic Incorporation of 15N and 13C for Assignment and Interpretation of Nuclear Magnetic Resonance Spectra of Proteins , 1990, Quarterly Reviews of Biophysics.

[73]  E. Kupče,et al.  Increased sensitivity in HNCA and HN(CO)CA experiments by selective C beta decoupling. , 1996, Journal of magnetic resonance. Series B.

[74]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[75]  K. Wüthrich,et al.  Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions , 1990, Quarterly Reviews of Biophysics.

[76]  Jack Greenblatt,et al.  Methods for Measurement of Intermolecular NOEs by Multinuclear NMR Spectroscopy: Application to a Bacteriophage λ N-Peptide/boxB RNA Complex , 1997 .

[77]  J. Vederas,et al.  Synthesis of optically pure .alpha.-amino acids via salts of .alpha.-amino-.beta.-propiolactone , 1988 .

[78]  J. Beyer,et al.  A Convenient Synthesis of 4-Hydroxy[1-13C]benzoic Acid and Related Ring-Labelled Phenolic Compounds , 1998 .

[79]  L. Kay,et al.  New developments in isotope labeling strategies for protein solution NMR spectroscopy. , 2000, Current opinion in structural biology.

[80]  L. Kay,et al.  A pulsed field gradient isotope‐filtered 3D 13C HMQC‐NOESY experiment for extracting intermolecular NOE contacts in molecular complexes , 1994, FEBS letters.

[81]  T. Muir,et al.  Segmental isotopic labeling for structural biological applications of NMR. , 2004, Methods in molecular biology.

[82]  R. Riek,et al.  Transverse Relaxation-Optimized Spectroscopy (TROSY) for NMR Studies of Aromatic Spin Systems in 13C-Labeled Proteins , 1998 .

[83]  John L Markley,et al.  (13)C[(13)C] 2D NMR: a novel strategy for the study of paramagnetic proteins with slow electronic relaxation rates. , 2002, Journal of the American Chemical Society.

[84]  L. Kay,et al.  A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin , 1990 .

[85]  M. Kainosho Isotope labelling of macromolecules for structural determinations. , 1997, Nature structural biology.

[86]  Y. Kyōgoku,et al.  NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. , 1999, Biochemistry.

[87]  A. Goldberg,et al.  An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. , 1987, The Journal of biological chemistry.

[88]  Oleg Jardetzky,et al.  NMR in molecular biology , 1981 .

[89]  N. Dixon,et al.  Cell-free transcription/translation from PCR-amplified DNA for high-throughput NMR studies. , 2007, Angewandte Chemie.

[90]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[91]  L. Kay,et al.  A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. , 1990, Biochemistry.

[92]  Practical and theoretical aspects of three-dimensional homonuclear Hartmann-Hahn-nuclear overhauser enhancement spectroscopy of proteins , 1989 .

[93]  W. M. Westler,et al.  Practical introduction to theory and implementation of multinuclear, multidimensional nuclear magnetic resonance experiments. , 1994, Methods in enzymology.

[94]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[95]  F. Quiocho,et al.  Crystal Structure of PI-SceI, a Homing Endonuclease with Protein Splicing Activity , 1997, Cell.

[96]  Alexander Eletsky,et al.  A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment , 2003, Journal of biomolecular NMR.

[97]  G. Wider,et al.  NMR structure of the integral membrane protein OmpX. , 2004, Journal of molecular biology.

[98]  Andreas Plückthun,et al.  Circular β‐lactamase: stability enhancement by cyclizing the backbone , 1999 .

[99]  Heinz Rüterjans,et al.  High level cell-free expression and specific labeling of integral membrane proteins. , 2004, European journal of biochemistry.

[100]  Nicholas E. Dixon,et al.  In Vivo Protein Cyclization Promoted by a Circularly Permuted Synechocystis sp. PCC6803 DnaB Mini-intein* , 2002, The Journal of Biological Chemistry.

[101]  Paul A. Keifer,et al.  Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity , 1992 .

[102]  M. Kainosho,et al.  Assymetric synthesis of (2S,3R)- and (2S,3S)-[2-13C;3-2H] glutamic acid , 2009 .

[103]  P. Güntert,et al.  Structure of the putative 32 kDa myrosinase‐binding protein from Arabidopsis (At3g16450.1) determined by SAIL‐NMR , 2008, The FEBS journal.

[104]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[105]  Lewis E. Kay,et al.  Production and Incorporation of 15N, 13C, 2H (1H-δ1 Methyl) Isoleucine into Proteins for Multidimensional NMR Studies , 1997 .

[106]  S. Teichmann,et al.  An approach to global fold determination using limited NMR data from larger proteins selectively protonated at specific residue types , 1996, Journal of biomolecular NMR.

[107]  Werner Braun,et al.  Automated stereospecific 1H NMR assignments and their impact on the precision of protein structure determinations in solution , 1989 .

[108]  H. Crespi,et al.  Proton Magnetic Resonance of Proteins Fully Deuterated except for 1H-Leucine Side Chains , 1968, Science.

[109]  L. Kay,et al.  The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. , 1998, Annual review of biophysics and biomolecular structure.

[110]  Dong-Myung Kim,et al.  Prolonging Cell‐Free Protein Synthesis by Selective Reagent Additions , 2000, Biotechnology progress.

[111]  T. Kigawa,et al.  A highly efficient cell-free protein synthesis system from Escherichia coli. , 1996, European journal of biochemistry.

[112]  M. Maurizi Degradation in vitro of bacteriophage lambda N protein by Lon protease from Escherichia coli. , 1987, The Journal of biological chemistry.

[113]  M D Carr,et al.  Stereospecific assignments of the leucine methyl resonances in the 1H NMR spectrum of Lactobacillus casei dihydrofolate reductase , 1993, FEBS letters.

[114]  J-M Betton,et al.  Rapid translation system (RTS): a promising alternative for recombinant protein production. , 2003, Current protein & peptide science.

[115]  Peter Güntert,et al.  Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system , 2009, Journal of biomolecular NMR.

[116]  M. Oba,et al.  Stereoselective Deuterium‐Labeling of Diastereotopic Methyl and Methylene Protons of L‐Leucine. , 1998 .

[117]  M Nilges,et al.  Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. , 1995, Journal of molecular biology.

[118]  M. Kainosho,et al.  Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. , 1982, Biochemistry.

[119]  L. Kay,et al.  NMR studies of protein structure and dynamics. , 2005, Journal of magnetic resonance.

[120]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[121]  D. W. Young,et al.  Synthesis of L-serine stereospecifically labelled at C-3 with deuterium , 1983 .

[122]  C. Arrowsmith,et al.  NMR of large (s> 25 kDa) proteins and protein complexes , 1998 .

[123]  J. Vederas,et al.  Conversion of serine to stereochemically pure .beta.-substituted .alpha.-amino acids via .beta.-lactones , 1985 .

[124]  L. Kay,et al.  Comparison of 13CH3, 13CH2D, and 13CHD2 methyl labeling strategies in proteins , 2005, Journal of biomolecular NMR.

[125]  E. E. Jun. Ueber die Condensation der Hippursure mit Phtalsureanhydrid und mit Benzaldehyd , 1893 .

[126]  O. Jardetzky,et al.  High-Resolution Nuclear Magnetic Resonance Spectra of Selectively Deuterated Staphylococcal Nuclease , 1968, Science.

[127]  Kalle Gehring,et al.  Solution NMR Studies of a 42 KDa Escherichia Coli Maltose Binding Protein/β-Cyclodextrin Complex: Chemical Shift Assignments and Analysis , 1998 .

[128]  I. Campbell,et al.  NMR and structural genomics. , 2003, Accounts of chemical research.

[129]  I. Shimada,et al.  Nuclear magnetic resonance study of antibodies: a multinuclear approach. , 1994, Methods in enzymology.

[130]  Ivano Bertini,et al.  A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. , 2003, Journal of the American Chemical Society.

[131]  P. Güntert,et al.  Solution Structure of the C-terminal Dimerization Domain of SARS Coronavirus Nucleocapsid Protein Solved by the SAIL-NMR Method , 2007, Journal of Molecular Biology.

[132]  Phil Attard,et al.  Stabilization of native protein fold by intein-mediated covalent cyclization. , 2005, Journal of molecular biology.

[133]  A. Edwards,et al.  Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. , 2003, Accounts of chemical research.

[134]  M. Fujita,et al.  New and Effective Routes to Fluoro Analogues of Aliphatic and Aromatic Amino Acids. , 1990 .

[135]  Wing-Yiu Choy,et al.  Solution NMR-derived global fold of a monomeric 82-kDa enzyme. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[136]  F A Quiocho,et al.  Calmodulin structure refined at 1.7 A resolution. , 1992, Journal of molecular biology.

[137]  Y Endo,et al.  A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[138]  N. Dixon,et al.  NMR analysis of in vitro‐synthesized proteins without purification: a high‐throughput approach , 2002, FEBS letters.

[139]  T. Pawson,et al.  Structure and mutagenesis of the Dbl homology domain , 1998, Nature Structural Biology.

[140]  J. Cavanagh Protein NMR Spectroscopy: Principles and Practice , 1995 .

[141]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[142]  F. Richards,et al.  NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. , 1988, Biochemistry.

[143]  M. Burk,et al.  Rh−DuPHOS-Catalyzed Enantioselective Hydrogenation of Enol Esters. Application to the Synthesis of Highly Enantioenriched α-Hydroxy Esters and 1,2-Diols , 1998 .

[144]  W. Lubitz,et al.  Lysis of Escherichia coli by induction of cloned ϕX174 genes , 2004, Molecular and General Genetics MGG.

[145]  S. Fesik,et al.  A METHOD FOR ASSIGNING PHENYLALANINES IN PROTEINS , 1999 .

[146]  J. Santoro,et al.  A constant-time 2D overbodenhausen experiment for inverse correlation of isotopically enriched species , 1992 .

[147]  W. Gronwald,et al.  Automated structure determination of proteins by NMR spectroscopy , 2004 .

[148]  L. Kay,et al.  A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins , 1999, Journal of biomolecular NMR.

[149]  Michael Nilges,et al.  Calculation of Symmetric Oligomer Structures from NMR Data , 2002 .

[150]  Thomas Szyperski,et al.  Protein NMR spectroscopy in structural genomics , 2000, Nature Structural Biology.

[151]  H. Atreya,et al.  Selective `unlabeling' of amino acids in fractionally 13C labeled proteins: An approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues , 2001, Journal of biomolecular NMR.

[152]  A. Bax,et al.  Delineation of .alpha.-helical domains in deuteriated Staphylococcal nuclease by 2D NOE NMR spectroscopy , 1988 .

[153]  M Kainosho,et al.  Synthesis of (13)C/D doubly labeled L-leucines: probes for conformational analysis of the leucine side-chain. , 2001, The Journal of organic chemistry.

[154]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[155]  D. Wishart,et al.  An NMR approach to structural proteomics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[156]  Ad Bax,et al.  Correlating Backbone Amide and Side-Chain Resonances in Larger Proteins By Multiple Relayed Triple Resonance NMR , 1992 .

[157]  T. Torizawa,et al.  Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol , 2004, Journal of biomolecular NMR.

[158]  A. Palmer,et al.  Heteronuclear-correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection, and sensitivity enhancement using z rotations. , 1994, Journal of magnetic resonance. Series B.

[159]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[160]  K Wüthrich,et al.  Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. , 1991, Journal of molecular biology.

[161]  E. Olejniczak,et al.  A 4D HCCH-TOCSY experiment for assigning the side chain1H and13C resonances of proteins , 1992, Journal of biomolecular NMR.

[162]  D. S. Garrett,et al.  Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. , 1997, Biochemistry.

[163]  M. Kainosho,et al.  Stereoselective synthesis of triply isotope-labeled Ser, Cys, and Ala: amino acids for stereoarray isotope labeling technology. , 2008, Organic letters.

[164]  M. Fujita,et al.  New and effective routes to fluoro analogs of aliphatic and aromatic amino acids , 1989 .

[165]  Ad Bax,et al.  Three-dimensional triple-resonance NMR Spectroscopy of isotopically enriched proteins. 1990. , 1990, Journal of magnetic resonance.

[166]  Robert Powers,et al.  An integrated platform for automated analysis of protein NMR structures. , 2005, Methods in enzymology.

[167]  L. Kay,et al.  Secondary structure and side-chain 1H and 13C resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy. , 1991, Biochemistry.

[168]  Masasuke Yoshida,et al.  Dynamic inter-subunit interactions in thermophilic F1-ATPase subcomplexes studied by cross-correlated relaxation-enhanced polarization transfer NMR , 2008, Journal of biomolecular NMR.

[169]  M. Burk C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions , 1991 .

[170]  S. Züger,et al.  Highly efficient protein trans‐splicing by a naturally split DnaE intein from Nostoc punctiforme , 2006, FEBS letters.

[171]  L. Kay,et al.  Assignment of 15N, 13Cα, 13Cβ, and HN Resonances in an 15N,13C,2H Labeled 64 kDa Trp Repressor−Operator Complex Using Triple-Resonance NMR Spectroscopy and 2H-Decoupling , 1996 .

[172]  M. Wittekind,et al.  Incorporation of 1H/13C/15N-{Ile, Leu, Val} into a Perdeuterated, 15N-Labeled Protein: Potential in Structure Determination of Large Proteins by NMR , 1996 .

[173]  J. Prestegard,et al.  Residual dipolar couplings in structure determination of biomolecules. , 2004, Chemical reviews.

[174]  F. Studier,et al.  Cloning and expression of the gene for bacteriophage T7 RNA polymerase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[175]  K Wüthrich,et al.  Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints , 1991, Journal of biomolecular NMR.

[176]  Ronald Wetzel,et al.  Inclusion Body Formation and Protein Stability in Sequence Variants of Interleukin-lfl * , 2001 .

[177]  P. Wright,et al.  Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy , 1991 .

[178]  M. Oba,et al.  STEREOSELECTIVE DEUTERIUM-LABELLING OF DIASTEREOTOPIC METHYL AND METHYLENEPROTONS OF L-LEUCINE , 1998 .

[179]  S. Ohki,et al.  Letter to the Editor: Backbone 1H, 13C, and 15N resonance assignments of an 18.2 kDa protein, E. coli peptidyl-prolyl cis-trans isomerase b (EPPIb) , 2000, Journal of biomolecular NMR.

[180]  Kurt Wüthrich,et al.  NMR analysis of a 900K GroEL–GroES complex , 2002, Nature.

[181]  K. Wüthrich,et al.  Structure determination of the Antp (C39----S) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA. , 1991, Journal of molecular biology.

[182]  K. Wüthrich,et al.  Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. , 1989, Biochemistry.

[183]  Alexander Shekhtman,et al.  Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[184]  R. R. Ernst,et al.  Novel three-dimensional NMR techniques for studies of peptides and biological macromolecules , 1987 .

[185]  Y. Matsuo,et al.  Structural genomics projects in Japan. , 2000, Progress in biophysics and molecular biology.

[186]  K Wüthrich,et al.  Automated sequence-specific NMR assignment of homologous proteins using the program GARANT , 1996, Journal of biomolecular NMR.

[187]  D Cowburn,et al.  Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Peter Güntert,et al.  Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment , 2004, Journal of Structural and Functional Genomics.

[189]  Sensitivity-enhanced IPAP experiments for measuring one-bond 13C′–13Cα and 13Cα–1Hα residual dipolar couplings in proteins , 2004 .

[190]  Arthur G. Palmer,et al.  Sensitivity improvement in proton-detected two-dimensional heteronuclear relay spectroscopy , 1991 .

[191]  A. Palmer,et al.  Sensitivity improvement in three-dimensional heteronuclear correlation NMR spectroscopy , 1992 .

[192]  Volker Dötsch,et al.  Efficient strategy for the rapid backbone assignment of membrane proteins. , 2005, Journal of the American Chemical Society.

[193]  D. Ollis,et al.  Crystal structure of cytoplasmic Escherichia coli peptidyl-prolyl isomerase: evidence for decreased mobility of loops upon complexation. , 1997, Journal of molecular biology.

[194]  L. Kay,et al.  Two-dimensional NMR experiments for correlating carbon-13.beta. and proton.delta./.epsilon. chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings , 1993 .

[195]  Toshio Yamazaki,et al.  Segmental Isotope Labeling for Protein NMR Using Peptide Splicing , 1998 .

[196]  M. Kainosho,et al.  Solution structure of a human cystatin A variant, cystatin A2-98 M65L, by NMR spectroscopy. A possible role of the interactions between the N- and C-termini to maintain the inhibitory active form of cystatin A. , 1995, Biochemistry.

[197]  Martin Billeter,et al.  Fully automated sequence-specific resonance assignments of hetero- nuclear protein spectra , 2003, Journal of biomolecular NMR.

[198]  Martin Billeter,et al.  Point-centered domain decomposition for parallel molecular dynamics simulation , 2000 .

[199]  A. Bax,et al.  2D and 3D NMR Study of Phenylalanine Residues in Proteins by Reverse Isotopic Labeling , 1994 .

[200]  F. Allain,et al.  Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. , 2008, Journal of molecular biology.

[201]  H. Iwai,et al.  Segmental Isotopic Labelling of a Multidomain Protein by Protein Ligation by Protein Trans‐Splicing , 2008, Chembiochem : a European journal of chemical biology.

[202]  L. Kay,et al.  Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. , 2000, Journal of molecular biology.

[203]  Masasuke Yoshida,et al.  Conformational change of H+-ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. , 2004, Journal of the American Chemical Society.

[204]  Alexander Shekhtman,et al.  Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR) , 2006, Nature Methods.

[205]  S. Züger,et al.  Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies , 2005, Nature Biotechnology.

[206]  S. Grzesiek,et al.  Carbon-13 line narrowing by deuterium decoupling in deuterium/carbon-13/nitrogen-15 enriched proteins. Application to triple resonance 4D J connectivity of sequential amides , 1993 .

[207]  G. Melacini Separation of Intra- and Intermolecular NOEs through Simultaneous Editing and J-Compensated Filtering: A 4D Quadrature-Free Constant-Time J-Resolved Approach , 2000 .

[208]  L. Kay,et al.  Comparison of 13 CH 3 , 13 CH 2 D, and 13 CHD 2< , 2005 .

[209]  Ad Bax,et al.  Solution structure of Ca2+–calmodulin reveals flexible hand-like properties of its domains , 2001, Nature Structural Biology.

[210]  M. Oba,et al.  Asymmetric synthesis of l-proline regio- and stereoselectively labelled with deuterium , 1999 .

[211]  A. Spirin,et al.  A continuous cell-free translation system capable of producing polypeptides in high yield. , 1988, Science.

[212]  Ad Bax,et al.  An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins , 1992 .

[213]  D. Wemmer,et al.  Protein Signal Assignments Using Specific Labeling and Cell-Free Synthesis , 2004, Journal of biomolecular NMR.

[214]  Hideo Takahashi,et al.  A novel NMR method for determining the interfaces of large protein–protein complexes , 2000, Nature Structural Biology.

[215]  K. Zangger,et al.  X-filtering for a range of coupling constants: application to the detection of intermolecular NOEs. , 2003, Journal of magnetic resonance.

[216]  Peter Güntert,et al.  Automated structure determination of proteins with the SAIL-FLYA NMR method , 2007, Nature Protocols.

[217]  Mark J Howard,et al.  Protein NMR spectroscopy , 1998, Current Biology.