Representations of q-orthogonal polynomials

The linearization problem is the problem of finding the coefficients C"k(m,n) in the expansion of the product P"n(x)Q"m(x) of two polynomial systems in terms of a third sequence of polynomials R"k(x), P"n(x)Q"m(x)=@?k=0n+mC"k(m,n)R"k(x). Note that, in this setting, the polynomials P"n,Q"m and R"k may belong to three different polynomial families. If Q"m(x)=1, we are faced with the so-called connection problem, which for P"n(x)=x^n is known as the inversion problem for the family R"k(x). In this paper, we use an algorithmic approach to compute the connection and linearization coefficients between orthogonal polynomials of the q-Hahn tableau. These polynomial systems are solutions of a q-differential equation of the type @s(x)D"qD"1"/"qP"n(x)+@t(x)D"qP"n(x)+@l"nP"n(x)=0, where the q-differential operator D"q is defined by D"qf(x)=f(qx)-f(x)(q-1)x.

[1]  Wolfram Koepf,et al.  Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen , 2009 .

[2]  R. Askey,et al.  Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .

[3]  Wolfram Koepf,et al.  Algorithms for q-Hypergeometric Summation in Computer Algebra , 1999, J. Symb. Comput..

[4]  Wolfram Koepf,et al.  On a structure formula for classical q -orthogonal polynomials , 2001 .

[5]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[6]  Renato Alvarez-Nodarse,et al.  On the q -polynomials: a distributed study , 2001 .

[7]  Torsten Sprenger Algorithmen für q-holonome Funktionen und q-hypergeometrische Reihen , 2009 .

[8]  Wolfram Koepf,et al.  Recurrence equations and their classical orthogonal polynomial solutions , 2002, Appl. Math. Comput..

[9]  Wolfram Koepf,et al.  Representations of orthogonal polynomials , 1997 .

[10]  Stanisław Lewanowicz,et al.  Construction of recurrences for the coefficients of expansions in q -classical orthogonal polynomials , 2003 .

[11]  I. Areaa,et al.  Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas , 2001 .

[12]  Wolfram Koepf,et al.  Algorithmic determination of q-power series for q-holonomic functions , 2012, J. Symb. Comput..

[13]  Peter Horn,et al.  Faktorisierung in Schief-Polynomringen , 2009 .

[14]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[15]  Rene F. Swarttouw,et al.  Hypergeometric Orthogonal Polynomials , 2010 .

[16]  Marko Petkovsek,et al.  Hypergeometric Solutions of Linear Recurrences with Polynomial Coefficents , 1992, J. Symb. Comput..

[17]  Iván Area,et al.  Extensions of some results of P. Humbert on Bezout's identity for classical orthogonal polynomials , 2006 .

[18]  Sergei A. Abramov,et al.  q-Hypergeometric solutions of q-difference equations , 1998, Discret. Math..

[19]  Wolfram Koepf,et al.  Hypergeometric Summation : An Algorithmic Approach to Summation and Special Function Identities , 1998 .

[20]  Iván Area,et al.  Inversion Problems in the q-Hahn Tableau , 1999, J. Symb. Comput..