A family of integral operators preserving subordination and superordination

The main purpose of the present paper is to investigate some subordination-preserving and superordination-preserving properties of a certain family of integral operators. Several sandwich-type results associated with this family of integral operators are also derived. 2000 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.

[1]  H. M. Srivastava,et al.  A new class of analytic functions defined by means of a convolution operator involving the Hurwitz–Lerch Zeta function , 2007 .

[2]  S. Owa,et al.  Double Subordination-Preserving Properties for Certain Integral Operators , 2007 .

[4]  H. M. Srivastava,et al.  Some expansion formulas for a class of generalized Hurwitz–Lerch Zeta functions , 2006 .

[5]  J. López,et al.  Asymptotic expansions of the Hurwitz–Lerch zeta function , 2004 .

[6]  Hari M. Srivastava,et al.  Some inclusion properties of a certain family of integral operators , 2002 .

[7]  Hari M. Srivastava,et al.  Certain families of series associated with the Hurwitz-Lerch Zeta function , 2005, Appl. Math. Comput..

[8]  T. N. Shanmugam,et al.  Differential sandwich theorems for some subclasses of analytic functions associated with linear operator , 2007, Appl. Math. Comput..

[9]  Yi Ling,et al.  The Choi-Saigo-Srivastava integral operator and a class of analytic functions , 2005, Appl. Math. Comput..

[10]  Hari M. Srivastava,et al.  An integral operator associated with the Hurwitz–Lerch Zeta function and differential subordination , 2007 .

[11]  H. M. Srivastava,et al.  A class of nonlinear integral operators preserving subordination and superordination , 2007 .

[12]  T. Bulboacă Sandwich-type theorems for a class of integral operators , 2006 .

[13]  Sanford S. Miller,et al.  Differential subordinations and univalent functions. , 1981 .

[14]  Hari M. Srivastava,et al.  Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials , 2005 .

[15]  斎藤 斉 On differential subordinations (単葉関数論の歴史的定理の新展開について) , 2000 .

[16]  N. Ayırtman,et al.  Univalent Functions , 1965, Series and Products in the Development of Mathematics.

[17]  Sanford S. Miller,et al.  Briot-Bouquet differential superordinations and sandwich theorems , 2007 .

[18]  Hari M. Srivastava,et al.  Series Associated with the Zeta and Related Functions , 2001 .

[19]  V. Ravichandran,et al.  Subordination and Superordination on Schwarzian Derivatives , 2008 .

[20]  Maslina Darus,et al.  Some properties of certain multivalent analytic functions involving the Cho-Kwon-Srivastava operator , 2009, Math. Comput. Model..

[21]  Hari M. Srivastava,et al.  Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz–Lerch Zeta functions , 2006 .

[22]  Rosihan M. Ali,et al.  Subordination and Superordination of the Liu-Srivastava Linear Operator on Meromorphic Functions , 2008 .

[23]  Sanford S. Miller,et al.  Univalent solutions of Briot-Bouquet differential equations , 1985 .

[24]  S. Sivasubramanian,et al.  On sandwich theorems for some classes of analytic functions , 2006, Int. J. Math. Math. Sci..

[25]  T. N. Shanmugam,et al.  Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations , 2006 .

[26]  Sanford S. Miller,et al.  Subordinants of differential superordinations , 2003 .

[27]  Janusz Sokół Classes of analytic functions associated with the Choi-Saigo-Srivastava operator , 2006 .

[28]  Shy-Der Lin,et al.  Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations , 2004, Appl. Math. Comput..

[29]  Jin-Lin Liu Subordinations for certain multivalent analytic functions associated with the generalized Srivastava–Attiya operator , 2008 .

[30]  S. P. Goyal,et al.  APPLICATIONS OF SRIVASTAVA-ATTIYA OPERATOR TO THE CLASSES OF STRONGLY STARLIKE AND STRONGLY CONVEX FUNCTIONS , 2009 .

[31]  V. Ravichandran,et al.  Differential subordination and superordination of analytic functions defined by the multiplier transformation , 2009 .

[32]  Sanford S. Miller,et al.  Differential Subordinations: Theory and Applications , 2000 .

[33]  M. Darus,et al.  On subordinations for certain analytic functions associated with generalized integral operator , 2008 .