Mathematical Aspects of the Periodic Law

We review different studies of the Periodic Law and the set of chemical elements from a mathematical point of view. This discussion covers the first attempts made in the 19th century up to the present day. Mathematics employed to study the periodic system includes number theory, information theory, order theory, set theory and topology. Each theory used shows that it is possible to provide the Periodic Law with a mathematical structure. We also show that it is possible to study the chemical elements taking advantage of their phenomenological properties, and that it is not always necessary to reduce the concept of chemical elements to the quantum atomic concept to be able to find interpretations for the Periodic Law. Finally, a connection is noted between the lengths of the periods of the Periodic Law and the philosophical Pythagorean doctrine.

[1]  D. Pettifor Phenomenology and theory in structural prediction , 1996 .

[2]  Edward G. Mazurs Graphic Representations of the Periodic System During One Hundred Years , 1974 .

[3]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[4]  P. Sneath Numerical Classification of the Chemical Elements and Its Relation to the Periodic System , 2000 .

[5]  Guillermo Restrepo,et al.  Topological Study of the Periodic System , 2004, J. Chem. Inf. Model..

[6]  Douglas J. Klein,et al.  Partial Orderings in Chemistry , 1997, J. Chem. Inf. Comput. Sci..

[7]  Guillermo Restrepo,et al.  On the Topological Sense of Chemical Sets , 2006 .

[8]  L. B. Railsback,et al.  An earth scientist's periodic table of the elements and their ions , 2003 .

[9]  David Robert,et al.  On the extension of quantum similarity to atomic nuclei: Nuclear quantum similarity , 1998 .

[10]  N. Biggs,et al.  Graph Theory 1736-1936 , 1976 .

[11]  V. Ostrovsky What and How Physics Contributes to Understanding the Periodic Law , 2001 .

[12]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[13]  Vladik Kreinovich,et al.  Ordinal Explanation of the Periodic System of Chemical Elements , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Guillermo Restrepo,et al.  From Trees (Dendrograms and Consensus Trees) to Topology , 2005 .

[15]  Johann Benedict Listing,et al.  Vorstudien zur Topologie , 1848 .

[16]  H. Moseley,et al.  THE HIGH FREQUENCY SPECTRA OF THE ELEMENTS By , 2009 .

[17]  B. Russell,et al.  Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.

[18]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[19]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[20]  R. Sokal,et al.  Principles of numerical taxonomy , 1965 .

[21]  T. Overton,et al.  Descriptive Inorganic Chemistry , 1995 .

[22]  Ramon Carbó,et al.  LCAO–MO similarity measures and taxonomy† , 1987 .

[23]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[24]  Mendeléeff LXIII.—The Periodic Law of the Chemical Elements , 1889 .

[25]  R. Carbó-Dorca,et al.  General trends in atomic and nuclear quantum similarity measures , 2000 .

[26]  D. Rouvray,et al.  The Mathematics Of The Periodic Table , 2005 .

[27]  Juli Real i Obradors,et al.  Química Inorgànica I , 2005 .

[28]  W. W. Ball,et al.  A Short Account of the History of Mathematics . By Walter W. R. Ball. London and New York, Macmillan. 12°. $2.60 , 1888, Science.

[29]  Douglas J. Klein,et al.  Similarity and dissimilarity in posets , 1995 .

[30]  P. Gölitz,et al.  Concepts in Chemistry , 1996 .

[31]  D. Pettifor Structure maps in magnetic alloy design , 1988 .

[32]  Guillermo Restrepo,et al.  Topological Space of the Chemical Elements and its Properties , 2006 .

[33]  H. Moseley,et al.  XCIII. The high-frequency spectra of the elements , 1913 .

[34]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[35]  D. Weise A Pythagorean Approach to Problems of Periodicity in Chemical and Nuclear Physics , 2003 .

[36]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[37]  Rainer Brüggemann,et al.  Ranking regions through cluster analysis and posets , 2005 .

[38]  Brian Everitt,et al.  Cluster analysis , 1974 .

[39]  G. Restrepo,et al.  Chemotopological study of the fourth period mono-hydrides , 2005 .

[40]  Adrian P. Sutton,et al.  Electronic Structure of Materials , 1993 .

[41]  Arthur Cayley,et al.  The Collected Mathematical Papers: ARTHUR CAYLEY , 1889 .

[42]  Michael Potter,et al.  Set theory and its philosophy , 2004 .

[43]  D. Pettifor,et al.  Structure maps for. Pseudobinary and ternary phases , 1988 .

[44]  G. Frege Grundgesetze der Arithmetik , 1893 .

[45]  Erkki J. Brändas,et al.  Advanced Topics in Theoretical Chemical Physics , 2003 .