Analysis of the solution of the Sylvester equation using low-rank ADI with exact shifts

Abstract The solution to a general Sylvester equation A X − X B = G F ∗ with a low-rank right-hand side is analyzed quantitatively through the Low-rank Alternating-Directional-Implicit method (LR-ADI) with exact shifts. New bounds and perturbation bounds on X are obtained. A distinguished feature of these bounds is that they reflect the interplay between the eigenvalue decompositions of A and B and the right-hand side factors G and F . Numerical examples suggest that because of this inclusion of details, new perturbation bounds are much sharper than the existing ones.

[1]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[4]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[5]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[6]  Peter Benner,et al.  Gramian-Based Model Reduction for Data-Sparse Systems , 2008, SIAM J. Sci. Comput..

[7]  Ninoslav Truhar,et al.  The perturbation bound for the solution of the Lyapunov equation , 2007 .

[8]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[9]  Danny C. Sorensen,et al.  The Sylvester equation and approximate balanced reduction , 2002 .

[10]  Thilo Penzl LYAPACK Users Guide - A MATLAB Toolbox for Large Lyapunov and Riccati . . . , 2000 .

[11]  Y. Zhou,et al.  On the decay rate of Hankel singular values and related issues , 2002, Syst. Control. Lett..

[12]  T. Chan,et al.  Effectively Well-Conditioned Linear Systems , 1988 .

[13]  Wayne H. Enright,et al.  Improving the Efficiency of Matrix Operations in the Numerical Solution of Stiff Ordinary Differential Equations , 1978, TOMS.

[14]  Danny C. Sorensen,et al.  A Modified Low-Rank Smith Method for Large-Scale Lyapunov Equations , 2004, Numerical Algorithms.

[15]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[16]  Danny C. Sorensen,et al.  Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..

[17]  Ninoslav Truhar,et al.  Bounds on the trace of a solution to the Lyapunov equation with a general stable matrix , 2007, Syst. Control. Lett..

[18]  Eugene L. Wachspress,et al.  Trail to a Lyapunov equation solver , 2008, Comput. Math. Appl..

[19]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[20]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[21]  Daniel Boley,et al.  Numerical Methods for Linear Control Systems , 1994 .

[22]  R. Aldhaheri Model order reduction via real Schur-form decomposition , 1991 .

[23]  A. J. Laub,et al.  Efficient matrix-valued algorithms for solving stiff Riccati differential equations , 1990 .

[24]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[25]  Thilo Penzl Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case , 2000 .

[26]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[27]  E. Wachspress Iterative solution of the Lyapunov matrix equation , 1988 .

[28]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[29]  R. Bhatia,et al.  How and Why to Solve the Operator Equation AX−XB = Y , 1997 .

[30]  Ulrike Baur,et al.  Low rank solution of data‐sparse Sylvester equations , 2008, Numer. Linear Algebra Appl..

[31]  Peter Benner,et al.  On the ADI method for Sylvester equations , 2009, J. Comput. Appl. Math..

[32]  S. Sieniutycz,et al.  Optimal Control: An Introduction , 2001 .

[33]  N. Martins,et al.  Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models , 2008, IEEE Transactions on Power Systems.

[34]  P. Benner FACTORIZED SOLUTION OF SYLVESTER EQUATIONS WITH APPLICATIONS IN CONTROL , 2004 .

[35]  V. Mehrmann,et al.  Perturbation theory for matrix equations , 2003, IEEE Transactions on Automatic Control.

[36]  Luca Dieci,et al.  Numerical integration of the differential Riccati equation and some related issues , 1992 .

[37]  Thilo Penzl LYAPACK A MATLAB Toolbox for Large Lyapunov and Riccati Equations , Model Reduction Problems , and Linear – Quadratic Optimal Control Problems Users , 2000 .