Microlocalization of rational Cherednik algebras

We construct a microlocalization of the rational Cherednik algebras H of type Sn. This is achieved by a quantization of the Hilbert scheme Hilb C2 of n points in C2. We then prove the equivalence of the category of H -modules and that of modules over its microlocalization under certain conditions on the parameter.

[1]  Eckhard Meinrenken,et al.  LIE GROUPS AND LIE ALGEBRAS , 2021, Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34.

[2]  Stacks of quantization-deformation modules on complex symplectic manifolds , 2003, math/0305171.

[3]  I. Gordon,et al.  Rational Cherednik algebras and Hilbert schemes , 2004 .

[4]  M. Kashiwara Quantization of contact manifolds , 1996 .

[5]  M. Kashiwara,et al.  The invariant holonomic system on a semisimple Lie algebra , 1984 .

[6]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[7]  G. Heckman A Remark on the Dunkl Differential—Difference Operators , 1991 .

[8]  I. Gordon,et al.  Symplectic reflection algebras , 2007, 0712.1568.

[9]  Almost-commuting variety, D-modules, and Cherednik algebras , 2004, math/0409262.

[10]  N. Bourbaki,et al.  Lie Groups and Lie Algebras: Chapters 1-3 , 1989 .

[11]  Victor Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000 .

[12]  Geometry and topology of symplectic resolutions , 2006, math/0608143.

[13]  Mark Haiman,et al.  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001, math/0201148.

[14]  V. Ginzburg,et al.  Cherednik algebras and Hilbert schemes in characteristic p , 2003, math/0312474.

[15]  P. Etingof,et al.  Parabolic induction and restriction functors for rational Cherednik algebras , 2008, 0803.3639.

[16]  Shlomo Sternberg,et al.  Hamiltonian group actions and dynamical systems of calogero type , 1978 .

[17]  N. Hitchin MICRODIFFERENTIAL SYSTEMS IN THE COMPLEX DOMAIN (Grundlehren der mathematischen Wissenschaften 269) , 1987 .

[18]  K. Brown Symplectic Reflection Algebras , 2003, Irish Mathematical Society Bulletin.

[19]  M. Kashiwara,et al.  On Holonomic Systems of Micro-differential Equations. III-Systems with Regular Singularities- , 1981 .

[20]  route de Chartres,et al.  Deformation quantization of algebraic varieties , 2008 .

[21]  M. Kashiwara Equivariant Derived Categories and Representations of Real Semisimple Lie Groups , 2004 .

[22]  Mark Haiman,et al.  Hilbert schemes, polygraphs and the Macdonald positivity conjecture , 2000, math/0010246.

[23]  I. Gordon,et al.  Rational Cherednik algebras and Hilbert schemes, II: Representations and sheaves , 2004 .

[24]  Vanishing theorems and character formulas for the Hilbert scheme of points in the plane , 2001 .

[25]  V. Ginzburg,et al.  Cherednik algebras and Hilbert schemes in characteristic , 2006 .

[26]  P. Schapira Microdifferential Systems in the Complex Domain , 1985 .

[27]  V. Ginzburg,et al.  Cherednik algebras and differential operators on quasi-invariants , 2001, math/0111005.

[28]  Hiraku Nakajima Lectures on Hilbert Schemes of Points on Surfaces , 1999 .