Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia

[1]  Malawi,et al.  PAGE , 2019, Springer Reference Medizin.

[2]  B. Dynlacht,et al.  Role for the IFT-A Complex in Selective Transport to the Primary Cilium. , 2016, Cell reports.

[3]  D. Nickerson,et al.  Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome , 2016, Scientific Reports.

[4]  D. Nickerson,et al.  IFT52 mutations destabilize anterograde complex assembly, disrupt ciliogenesis and result in short rib polydactyly syndrome. , 2016, Human molecular genetics.

[5]  J. Lupski,et al.  Copy-Number Variation Contributes to the Mutational Load of Bardet-Biedl Syndrome. , 2016, American journal of human genetics.

[6]  E. Marcotte,et al.  The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery , 2016, Nature Genetics.

[7]  H. Hamada,et al.  Overall Architecture of the Intraflagellar Transport (IFT)-B Complex Containing Cluap1/IFT38 as an Essential Component of the IFT-B Peripheral Subcomplex* , 2016, The Journal of Biological Chemistry.

[8]  Sheila Unger,et al.  Nosology and classification of genetic skeletal disorders: 2015 revision , 2015, American journal of medical genetics. Part A.

[9]  A. Munnich,et al.  Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome. , 2015, American journal of human genetics.

[10]  S. Nelson,et al.  Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome , 2015, Nature Communications.

[11]  M. Digilio,et al.  Specific variants in WDR35 cause a distinctive form of Ellis-van Creveld syndrome by disrupting the recruitment of the EvC complex and SMO into the cilium. , 2015, Human molecular genetics.

[12]  R. Serra,et al.  Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton , 2015, Annals of the New York Academy of Sciences.

[13]  F. Alkuraya,et al.  A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies , 2014, Human molecular genetics.

[14]  A. Munnich,et al.  WDR34 mutations that cause short-rib polydactyly syndrome type III/severe asphyxiating thoracic dysplasia reveal a role for the NF-κB pathway in cilia. , 2013, American journal of human genetics.

[15]  Richard D Emes,et al.  Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy. , 2013, American journal of human genetics.

[16]  M. Brown,et al.  Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. , 2013, American journal of human genetics.

[17]  J. Majewski,et al.  WDR19: An ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior‐Loken syndrome , 2013, Clinical genetics.

[18]  F. Hildebrandt,et al.  Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy , 2013, Human Genetics.

[19]  Richard D Emes,et al.  Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement , 2013, Journal of Medical Genetics.

[20]  D. Cole,et al.  Analysis of interactions between intraflagellar transport proteins. , 2013, Methods in enzymology.

[21]  V. Cormier-Daire,et al.  Ciliary disorder of the skeleton , 2012, American journal of medical genetics. Part C, Seminars in medical genetics.

[22]  A. Munnich,et al.  Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. , 2012, American journal of human genetics.

[23]  Hongmin Qin,et al.  Subunit Interactions and Organization of the Chlamydomonas reinhardtii Intraflagellar Transport Complex A Proteins* , 2011, The Journal of Biological Chemistry.

[24]  A. Hoischen,et al.  Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. , 2011, American journal of human genetics.

[25]  Martin A. M. Reijns,et al.  Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. , 2011, American journal of human genetics.

[26]  J. Schuurs-Hoeijmakers,et al.  C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome , 2011, Journal of Medical Genetics.

[27]  Colin A. Johnson,et al.  TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum , 2011, Nature Genetics.

[28]  A. Ekici,et al.  NEK1 mutations cause short-rib polydactyly syndrome type majewski. , 2011, American journal of human genetics.

[29]  Christian Gilissen,et al.  Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. , 2010, American journal of human genetics.

[30]  R. Hennekam,et al.  Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. , 2010, American journal of human genetics.

[31]  K. Heimdal,et al.  Connective tissue involvement in two patients with features of cranioectodermal dysplasia , 2009, American journal of medical genetics. Part A.

[32]  A. Munnich,et al.  Mutation in IFT80 in a fetus with the phenotype of Verma-Naumoff provides molecular evidence for Jeune-Verma-Naumoff dysplasia spectrum , 2009, Journal of Medical Genetics.

[33]  Johannes Vogel,et al.  Quantifying Western blots: Pitfalls of densitometry , 2009, Electrophoresis.

[34]  A. Munnich,et al.  DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. , 2009, American journal of human genetics.

[35]  J. L. Yntema,et al.  Jeune syndrome: description of 13 cases and a proposal for follow-up protocol , 2009, European Journal of Pediatrics.

[36]  S. Nelson,et al.  Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. , 2009, American journal of human genetics.

[37]  S. Aftimos,et al.  An unclassifiable short rib‐polydactyly syndrome with acromesomelic hypomineralization and campomelia in siblings , 2007, American journal of medical genetics. Part A.

[38]  Colin A. Johnson,et al.  IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy , 2007, Nature Genetics.

[39]  J. Goodship,et al.  Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. , 2003, American journal of human genetics.

[40]  E. Ginns,et al.  A new gene, EVC2, is mutated in Ellis-van Creveld syndrome. , 2002, Molecular genetics and metabolism.

[41]  G. Piperno,et al.  Distinct Mutants of Retrograde Intraflagellar Transport (IFT) Share Similar Morphological and Molecular Defects , 1998, The Journal of cell biology.

[42]  D. Peabody,et al.  Translation initiation at non-AUG triplets in mammalian cells. , 1989, The Journal of biological chemistry.

[43]  V. McKusick,et al.  A heritable syndrome of craniosynostosis, short thin hair, dental abnormalities, and short limbs: cranioectodermal dysplasia. , 1977, The Journal of pediatrics.