The Complexity of Counting Edge Colorings and a Dichotomy for Some Higher Domain Holant Problems

We show that an effective version of Siegel's Theorem on finiteness of integer solutions for a specific algebraic curve and an application of elementary Galois theory are key ingredients in a complexity classification of some Holant problems. These Holant problems, denoted by Holant(f), are defined by a symmetric ternary function f that is invariant under any permutation of the κ ≥ 3 domain elements. We prove that Holant(f) exhibits a complexity dichotomy. The hardness, and thus the dichotomy, holds even when restricted to planar graphs. A special case of this result is that counting edge κ-colorings is #P-hard over planar 3-regular multigraphs for all κ ≥ 3. In fact, we prove that counting edge κ-colorings is #P-hard over planar r-regular multigraphs for all κ ≥ r ≥ 3. The problem is polynomial-time computable in all other parameter settings. The proof of the dichotomy theorem for Holant(f) depends on the fact that a specific polynomial p(x, y) has an explicitly listed finite set of integer solutions, and the determination of the Galois groups of some specific polynomials. In the process, we also encounter the Tutte polynomial, medial graphs, Eulerian partitions, Puiseux series, and a certain lattice condition on the (logarithm of) the roots of polynomials.

[1]  Zvi Galil,et al.  NP Completeness of Finding the Chromatic Index of Regular Graphs , 1983, J. Algorithms.

[2]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[3]  V. Sós,et al.  Counting Graph Homomorphisms , 2006 .

[4]  Jin-Yi Cai,et al.  Spin systems on k-regular graphs with complex edge functions , 2012, Theor. Comput. Sci..

[5]  Jin-Yi Cai,et al.  Holant problems and counting CSP , 2009, STOC '09.

[6]  Heng Guo,et al.  The Complexity of Planar Boolean #CSP with Complex Weights , 2012, ICALP.

[7]  G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .

[8]  C. Siegel Über einige Anwendungen diophantischer Approximationen , 2014 .

[9]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[10]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP , 2009, SIAM J. Comput..

[11]  Jin-Yi Cai,et al.  Non-negatively Weighted #CSP: An Effective Complexity Dichotomy , 2010, 2011 IEEE 26th Annual Conference on Computational Complexity.

[12]  H.-A. Loeliger,et al.  An introduction to factor graphs , 2004, IEEE Signal Process. Mag..

[13]  Jin-Yi Cai,et al.  Holographic Algorithms with Matchgates Capture Precisely Tractable Planar_#CSP , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[14]  Jin-Yi Cai,et al.  Holographic algorithms by Fibonacci gates , 2013 .

[15]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[16]  Jin-Yi Cai,et al.  The complexity of counting edge colorings and a dichotomy for some higher domain Holant problems , 2016 .

[17]  Jin-Yi Cai,et al.  From Holant to #CSP and Back: Dichotomy for Holantc Problems , 2012, Algorithmica.

[18]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[19]  P. Gallagher,et al.  The Large Sieve and Probabilistic Galois Theory , 1973 .

[20]  Jin-Yi Cai,et al.  Gadgets and anti-gadgets leading to a complexity dichotomy , 2012, ITCS '12.

[21]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[22]  Mingji Xia,et al.  The Complexity of Weighted Boolean #CSP Modulo k , 2011, STACS.

[23]  Jin-Yi Cai,et al.  Holant Problems for Regular Graphs with Complex Edge Functions , 2010, STACS.

[24]  Joanna A. Ellis-Monaghan New Results for the Martin Polynomial , 1998, J. Comb. Theory, Ser. B.

[25]  Michael Stiebitz,et al.  Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture , 2012 .

[26]  Joanna A. Ellis-Monaghan Identities for circuit partition polynomials, with applications to the Tutte polynomial , 2004, Adv. Appl. Math..

[27]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[28]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[29]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[30]  Pierre Martin,et al.  Enumérations eulériennes dans les multigraphes et invariants de Tutte-Grothendieck , 1977 .

[31]  Andrei A. Bulatov,et al.  The complexity of the counting constraint satisfaction problem , 2008, JACM.

[32]  Jin-Yi Cai,et al.  Computational Complexity of Holant Problems , 2011, SIAM J. Comput..

[33]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[34]  Jin-Yi Cai,et al.  Holographic reduction, interpolation and hardness , 2012, computational complexity.

[35]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[36]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[37]  Jin-Yi Cai,et al.  Valiant's Holant Theorem and Matchgate Tensors , 2006, TAMC.

[38]  公庄 庸三 Basic Algebra = 代数学入門 , 2002 .

[39]  P. G. Walsh,et al.  Corrections to "A quantitative version of Runge's theorem on diophantine equations" (Acta Arith. 62 (1992), 157-172) , 1995 .

[40]  Béla Bollobás,et al.  The interlace polynomial: a new graph polynomial , 2000, SODA '00.

[41]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2009, SIAM J. Comput..

[42]  A. W. Joshi Matrices and tensors in physics , 1975 .

[43]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[44]  Jin-Yi Cai,et al.  The complexity of complex weighted Boolean #CSP , 2014, J. Comput. Syst. Sci..

[45]  Martin E. Dyer,et al.  On the complexity of #CSP , 2010, STOC '10.

[46]  Dirk L. Vertigan,et al.  The Computational Complexity of Tutte Invariants for Planar Graphs , 2005, SIAM J. Comput..

[47]  Jin-Yi Cai,et al.  Dichotomy for Holant* Problems with Domain Size 3 , 2013, SODA.

[48]  P. Dienes,et al.  On tensor geometry , 1926 .

[49]  Andrei A. Bulatov,et al.  Towards a dichotomy theorem for the counting constraint satisfaction problem , 2007, Inf. Comput..

[50]  M. L. Vergnas,et al.  Le Polynôme De Martin D'un Graphe Eulerien , 1983 .

[51]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP with Mixed Signs , 2009, Theor. Comput. Sci..

[52]  P. G. Walsh,et al.  A quantitative version of Runge's theorem on diophantine equations , 1992 .

[53]  Richard J. Lipton,et al.  On Tractable Exponential Sums , 2010, FAW.

[54]  P. Müller,et al.  Hilbert’s irreducibility theorem for prime degree and general polynomials , 1999 .

[55]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[56]  A BulatovAndrei A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006 .

[57]  Jin-Yi Cai,et al.  A complete dichotomy rises from the capture of vanishing signatures: extended abstract , 2013, STOC '13.