Anisotropic Rabi model

We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

[1]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[2]  Chen Wang,et al.  Exact solvability of the quantum Rabi model using Bogoliubov operators , 2012, 1204.3668.

[3]  A. A. Anappara,et al.  Sub-cycle switch-on of ultrastrong light–matter interaction , 2009, Nature.

[4]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[5]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[6]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[7]  W. Ketterle,et al.  Spin-orbit coupling and quantum spin Hall effect for neutral atoms without spin flips. , 2013, Physical review letters.

[8]  B. Judd Exact solutions to a class of Jahn-Teller systems , 1979 .

[9]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[10]  E Solano,et al.  Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime. , 2010, Physical review letters.

[11]  Y. Pashkin,et al.  Rabi oscillations in a Josephson-junction charge two-level system. , 2001, Physical review letters.

[12]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[13]  V. Gritsev,et al.  Exceptional and regular spectra of a generalized Rabi model , 2013, 1307.7876.

[14]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[15]  Probing decoherence with electromagnetically induced transparency in superconductive quantum circuits. , 2003, Physical review letters.

[16]  Jon H. Shirley,et al.  Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .

[17]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[18]  Integrable spin–boson models descending from rational six-vertex models , 2007, cond-mat/0703630.

[19]  E. K. Irish,et al.  Generalized rotating-wave approximation for arbitrarily large coupling. , 2007, Physical review letters.

[20]  Victor V. Albert Quantum Rabi model for N-state atoms. , 2011, Physical review letters.

[21]  D. D. Awschalom,et al.  Observation of the Spin Hall Effect in Semiconductors , 2004, Science.

[22]  Variational study of the ν=1 quantum Hall ferromagnet in the presence of spin-orbit interaction , 2002, cond-mat/0209185.

[23]  I. B. Spielman,et al.  Spin–orbit-coupled Bose–Einstein condensates , 2011, Nature.

[24]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[25]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[26]  J J García-Ripoll,et al.  Switchable ultrastrong coupling in circuit QED. , 2009, Physical review letters.

[27]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[28]  Xiaobo Zhu,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2012 .

[29]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[30]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[31]  A. Siegert,et al.  Magnetic Resonance for Nonrotating Fields , 1940 .

[32]  E. Thuneberg,et al.  Stark effect and generalized Bloch-Siegert shift in a strongly driven two-level system. , 2010, Physical review letters.

[33]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[34]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[35]  D. Braak,et al.  Integrability of the Rabi model. , 2011, Physical review letters.

[36]  Integrable spin-boson interaction in the Tavis-Cummings model from a generic boundary twist , 2003, cond-mat/0309680.

[37]  M. Wagner Unitary Transformations in Solid State Physics , 1986 .

[38]  Xiong-Jun Liu,et al.  Effect of induced spin-orbit coupling for atoms via laser fields. , 2008, Physical review letters.

[39]  John M. Martinis,et al.  Superconducting Qubits , 2004 .