Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries.

The intercalation mechanism of zinc ions into 2 × 2 tunnels of an α-MnO2 cathode for rechargeable zinc batteries was revealed. It involves a series of single and two-phase reaction steps and produces buserite, a layered compound with an interlayer spacing of 11 Å as a discharge product.

[1]  C. Yoon,et al.  Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide , 2014, Scientific Reports.

[2]  B. Cho,et al.  Todorokite-type MnO2 as a zinc-ion intercalating material , 2013 .

[3]  Wei Wang,et al.  A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation , 2013, Scientific Reports.

[4]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[5]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[6]  L. Archer,et al.  The rechargeable aluminum-ion battery. , 2011, Chemical communications.

[7]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[8]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[9]  G. Sposito,et al.  Zinc surface complexes on birnessite: A density functional theory study , 2009 .

[10]  Montse Casas-Cabanas,et al.  Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. , 2008, Nature materials.

[11]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[12]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[13]  S. Komaba,et al.  Characterization and lithium insertion characteristics of hollandite-type Ky(Mn1-xMx)O2 for rechargeable lithium battery electrodes , 2006 .

[14]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[15]  G. Sposito,et al.  Structural model for the biogenic Mn oxide produced by Pseudomonas putida , 2006 .

[16]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[17]  S. Suib,et al.  Double-Aging Method for Preparation of Stabilized Na-Buserite and Transformations to Todorokites Incorporated with Various Metals. , 1999, Inorganic chemistry.

[18]  J. Post,et al.  Manganese oxide minerals: crystal structures and economic and environmental significance. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Stein,et al.  Synthesis, Characterization, and Electrochemical Properties of Magnesium Birnessite and Zinc Chalcophanite Prepared by a Low-Temperature Route , 1999 .

[20]  L. Nazar,et al.  Todorokite as a Li Insertion Cathode Comparison of a Large Tunnel Framework “ ” Structure with Its Related Layered Structures , 1998 .

[21]  Q. Feng,et al.  Hydrothermal Soft Chemical Process for Synthesis of Manganese Oxides with Tunnel Structures , 1998 .

[22]  A. Manceau,et al.  Structural mechanism of Co2+ oxidation by the phyllomanganate buserite , 1997 .

[23]  Q. Feng,et al.  Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase , 1995 .

[24]  W. David,et al.  Alpha manganese dioxide for lithium batteries: A structural and electrochemical study , 1992 .

[25]  J. Post,et al.  Chalcophanite, ZnMn 3 O 7 .3H 2 O; new crystal-structure determinations , 1988 .

[26]  C. C. Chen,et al.  Transformation of Birnessite to Buserite, Todorokite, and Manganite under Mild Hydrothermal Treatment , 1987 .

[27]  Robert A. Huggins,et al.  Thermodynamic and Mass Transport Properties of “ LiAl ” , 1979 .

[28]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[29]  A. D. Wadsley The crystal structure of chalcophanite, ZnMn3O7.3H2O , 1955 .

[30]  A. D. Wadsley Interstitial Atoms in the Layer Structure ZnMn3O73H2O (Chalcophanite) , 1953, Nature.

[31]  F. Kang,et al.  Investigation on Zinc Ion Storage in Alpha Manganese Dioxide for Zinc Ion Battery by Electrochemical Impedance Spectrum , 2013 .

[32]  G. Sposito,et al.  Zinc sorption to biogenic hexagonal-birnessite particles within a hydrated bacterial biofilm , 2006 .

[33]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .