Handover performance in the IEEE 802.16 mobile networks

The IEEE 802.16 standard provides a full mobility support for stations moving across cell borders. In addition, the WiMAX Forum Network Working Group defines a set of procedures to support handovers in the mobile access network. One of the main characteristics of mobility support is fully controlled and optimized handover (HO), in which a mobile station (MS) migrates from the air interface of one base station (BS) to another one. It is vital to keep the BS transition phase as short as possible to decrease delays and data loss, which is especially crucial for real-time applications, such as VoIP. In this paper we analyze ASN-anchored mobility performance and provide advisable handover related parameters. The obtained results show that it is reasonable to adapt the handover initiation functionality to the environment where the network is deployed.

[1]  Olli Alanen,et al.  Active Queue Management for Reducing Downlink Delays in WiMAX , 2007, 2007 IEEE 66th Vehicular Technology Conference.

[2]  Todor Cooklev,et al.  Air Interface for Fixed Broadband Wireless Access Systems , 2004 .

[3]  Mikko Majanen,et al.  Mobile WiMAX Handover Performance Evaluation , 2009, 2009 Fifth International Conference on Networking and Services.

[4]  Qi Chen,et al.  Overhaul of ieee 802.11 modeling and simulation in ns-2 , 2007, MSWiM '07.

[5]  Alexander Sayenko,et al.  Uplink VoIP Delays in IEEE 802.16e Using Different ertPS Resumption Mechanisms , 2009, 2009 Third International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies.

[6]  Stefan Parkvall,et al.  Performance comparison of HARQ with Chase combining and incremental redundancy for HSDPA , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[7]  Timo Hämäläinen,et al.  ARQ Aware Scheduling for the IEEE 802.16 Base Station , 2008, 2008 IEEE International Conference on Communications.

[8]  Alexander Sayenko,et al.  Performance comparison of HARQ and ARQ mechanisms in IEEE 802.16 networks , 2008, MSWiM '08.

[9]  Timo Hämäläinen,et al.  Adaptive Contention Resolution for VoIP Services in the IEEE 802.16 Networks , 2007, 2007 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks.

[10]  Hsiao-Hwa Chen,et al.  Mobile WiMAX : Toward Broadband Wireless Metropolitan Area Networks , 2007 .

[11]  Ieee Microwave Theory,et al.  Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems — Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands , 2003 .

[12]  Yevgeni Koucheryavy,et al.  On Evaluating a WiMAX Access Network for Isolated Research and Data Networks Using NS-2 , 2007, NEW2AN.

[13]  Timo Hämäläinen,et al.  Scheduling solution for the IEEE 802.16 base station , 2008, Comput. Networks.

[14]  Junaid Ahmed Zubairi,et al.  Hand Off Issues in 3G UMTS Networks , 2007, 2007 International Bhurban Conference on Applied Sciences & Technology.

[15]  Timo Hämäläinen,et al.  WINSE: WiMAX NS-2 extension , 2011, Simul..

[16]  Vitaliy Tykhomyrov,et al.  Analysis and Performance Evaluation of the IEEE 802.16 ARQ Mechanism , 2008 .

[17]  Olli Alanen,et al.  ARQ parameters for VoIP in IEEE 802.16 networks , 2009, 2009 Wireless Telecommunications Symposium.

[18]  Timo Hämäläinen,et al.  On ARQ feedback intensity of the IEEE 802.16 ARQ mechanism , 2008, 2008 International Conference on Telecommunications.

[19]  Jung-Fu Cheng,et al.  Coding performance of hybrid ARQ schemes , 2006, IEEE Transactions on Communications.

[20]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[21]  H. Martikainen,et al.  Optimal MAC PDU Size in IEEE 802.16 , 2008, 2008 4th International Telecommunication Networking Workshop on QoS in Multiservice IP Networks.

[22]  Mohd Dani Baba,et al.  Analysis of handover performance in mobile WiMAX networks , 2011, 2011 IEEE Control and System Graduate Research Colloquium.

[23]  Jenhui Chen,et al.  The design and implementation of WiMAX module for ns-2 simulator , 2006 .

[24]  Marco Miozzo,et al.  ns2-MIRACLE: a modular framework for multi-technology and cross-layer support in network simulator 2 , 2007, Valuetools 2007.

[25]  Robert W. Heath,et al.  The future of WiMAX: Multihop relaying with IEEE 802.16j , 2009, IEEE Communications Magazine.

[26]  Van Trees,et al.  Detection, Estimation, and Modulation Theory. Part 1 - Detection, Estimation, and Linear Modulation Theory. , 1968 .

[27]  S. Redana,et al.  Business Impact of Relay Deployment for Coverage Extension in 3GPP LTE-Advanced , 2009, 2009 IEEE International Conference on Communications Workshops.

[28]  Georgios B. Giannakis,et al.  On velocity estimation and correlation properties of narrow-band mobile communication channels , 2001, IEEE Trans. Veh. Technol..

[29]  Farouk Kamoun,et al.  An 802.16 model for NS2 simulator with an integrated QoS architecture , 2008, Simutools 2008.

[30]  Olli Alanen,et al.  Multicast polling and efficient voip connections in ieee 802.16 networks , 2007, MSWiM '07.

[31]  Timo Hämäläinen,et al.  Ensuring the QoS requirements in 802.16 scheduling , 2006, MSWiM '06.

[32]  Roberto Bustamante,et al.  WiMAX channel: PHY model in network simulator 2 , 2006 .

[33]  Donghoi Kim,et al.  The Optimum Parameter Design for WCDMA Intra-frequency Handover Initiation , 2005, ICCNMC.

[34]  Carl Eklund,et al.  Quality of service support in IEEE 802.16 networks , 2006, IEEE Network.

[35]  Frank Frederiksen,et al.  Performance and modeling of WCDMA/HSDPA transmission/H-ARQ schemes , 2002, Proceedings IEEE 56th Vehicular Technology Conference.

[36]  Taesoo Kwon,et al.  Design and implementation of a simulator based on a cross-layer protocol between MAC and PHY layers in a WiBro Compatible.IEEE 802.16e OFDMA system , 2005, IEEE Commun. Mag..

[37]  Lotfi Kamoun,et al.  An overview of mobility management over IEEE802.16e , 2009, 2009 International Conference on Telecommunications.

[38]  Timo Hämäläinen,et al.  Adaptive contention resolution parameters for the IEEE 802.16 networks , 2007, QSHINE.