Orthogonal Distance Regression ∗

Orthogonal Distance Regresson (ODR) is the name given to the computational problem associated with finding the maximum likelihood estimators of parameters in measurement error models in the case of normally distributed errors. We examine the stable and efficient algorithm of Boggs, Byrd and Schnabel (SIAM J. Sci. Stat. Comput., 8 (1987), pp. 1052– 1078) for finding the solution of this problem when the underlying model is assumed to be nonlinear in both the independent variable and the parameters. We also describe the associated public domain software package, ODRPACK. We then review the results of a simulation study that compares ODR with ordinary least squares (OLS). We also present the new results of an extension to this study. Finally we discuss the use of the asymptotic covariance matrix for computing confidence regions and intervals for the estimated parameters. Our conclusions are that ODR is better than OLS for the criteria considered, and that ODRPACK can provide effective solutions and useful statistical information for nonlinear ODR problems.

[1]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[2]  D. R. Powell,et al.  A rapidly convergent iterative method for the solution of the generalised nonlinear least squares problem , 1972, Comput. J..

[3]  G. Stewart Introduction to matrix computations , 1973 .

[4]  H. Britt,et al.  The Estimation of Parameters in Nonlinear, Implicit Models , 1973 .

[5]  T. W. Anderson Estimation of Linear Functional Relationships: Approximate Distributions and Connections with Simultaneous Equations in Econometrics , 1976 .

[6]  W. Fuller,et al.  Estimation of Nonlinear Errors-in-Variables Models , 1982 .

[7]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  J. Witmer,et al.  Nonlinear Regression Modeling. , 1984 .

[10]  Robert B. Schnabel,et al.  Computational experience with confidence intervals for nonlinear least squares , 1986 .

[11]  H. Schwetlick,et al.  Numerical Methods for Estimating Parameters in Nonlinear Models With Errors in the Variables , 1985 .

[12]  Richard F. Gunst,et al.  Stochastic Regression with Errors in Both Variables , 1986 .

[13]  P. Boggs,et al.  A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression , 1987 .

[14]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[15]  P. Boggs,et al.  ODRPACK Software for Weighted Orthogonal Distance Regression. , 1987 .

[16]  Robert B. Schnabel,et al.  A computational examination of orthogonal distance regression , 1988 .

[17]  Yasuo Amemiya,et al.  Estimation for the Nonlinear Functional Relationship , 1988 .

[18]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[19]  Richard H. Byrd,et al.  User's reference guide for ODRPACK:: software for weighted orthogonal distance regression version 1.7 , 1989 .