Antithetic Integral Feedback Ensures Robust Perfect Adaptation in Noisy Biomolecular Networks.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Deepak Mishra,et al.  A load driver device for engineering modularity in biological networks , 2014, Nature Biotechnology.

[3]  Ankit Gupta,et al.  A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks , 2013, PLoS Comput. Biol..

[4]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[5]  Irma Martínez-Flores,et al.  Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability , 2013, Current genomics.

[6]  F. Fages,et al.  Long-term model predictive control of gene expression at the population and single-cell levels , 2012, Proceedings of the National Academy of Sciences.

[7]  Albert Siryaporn,et al.  Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells , 2012, Molecular microbiology.

[8]  James A. Stapleton,et al.  Feedback Control of Protein Expression in Mammalian Cells by Tunable Synthetic Translational Inhibition , 2011, ACS synthetic biology.

[9]  D. Pincus,et al.  In silico feedback for in vivo regulation of a gene expression circuit , 2011, Nature Biotechnology.

[10]  K Oishi,et al.  Biomolecular implementation of linear I/O systems. , 2011, IET systems biology.

[11]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[12]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[13]  M. Feinberg,et al.  Structural Sources of Robustness in Biochemical Reaction Networks , 2010, Science.

[14]  Jay D. Keasling,et al.  A model for improving microbial biofuel production using a synthetic feedback loop , 2010, Systems and Synthetic Biology.

[15]  W. Lim,et al.  Defining Network Topologies that Can Achieve Biochemical Adaptation , 2009, Cell.

[16]  A. Oudenaarden,et al.  A Systems-Level Analysis of Perfect Adaptation in Yeast Osmoregulation , 2009, Cell.

[17]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[18]  J. Hespanha Moment closure for biochemical networks , 2008, 2008 3rd International Symposium on Communications, Control and Signal Processing.

[19]  K. Burrage,et al.  Stochastic models for regulatory networks of the genetic toggle switch. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Leibler,et al.  Mechanisms of noise-resistance in genetic oscillators , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Khammash,et al.  Calcium homeostasis and parturient hypocalcemia: an integral feedback perspective. , 2002, Journal of theoretical biology.

[22]  P. N. Paraskevopoulos,et al.  Modern Control Engineering , 2001 .

[23]  N. Fujita,et al.  Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. , 2000, Nucleic acids research.

[24]  M. Ehrenberg,et al.  Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Akira Ishihama,et al.  Transcriptional Organization and In Vivo Role of theEscherichia coli rsd Gene, Encoding the Regulator of RNA Polymerase Sigma D , 1999, Journal of bacteriology.

[27]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[28]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[29]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[30]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[31]  Dan ie l T. Gil lespie A rigorous derivation of the chemical master equation , 1992 .

[32]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[33]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..