Energy-efficient oxide-confined high-speed VCSELs for optical interconnects

Principles of energy-efficient high speed operation of oxide-confined VCSELs are presented. Trade-offs between oxideaperture diameter, current-density, and energy consumption per bit are demonstrated and discussed. Record energyefficient error-free data transmission up to 40 Gb/s, across up to 1000 m of multimode optical fiber and at up to 85 °C is reviewed.

[1]  Research at the University of Melbourne , 1958, Nature.

[2]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[3]  Kent D. Choquette,et al.  Scalability of small-aperture selectively oxidized vertical cavity lasers , 1997 .

[4]  Daniel Erni,et al.  Scaling effects on vertical-cavity surface-emitting lasers static and dynamic behavior , 2002 .

[5]  James K. Guenter,et al.  Reliability of various size oxide aperture VCSELs , 2002, 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345).

[6]  P. Moser,et al.  81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects , 2011 .

[7]  Hui Li,et al.  56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s , 2012 .

[8]  Alex Mutig,et al.  85 °C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers , 2012 .

[9]  Johan S. Gustavsson,et al.  25 Gbit/s transmission over 500 m multimode fibre using 850 nm VCSEL with integrated mode filter , 2012 .

[10]  Hui Li,et al.  Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat , 2013 .

[11]  Nikolai N. Ledentsov,et al.  Impact of the aperture diameter on the energy efficiency of oxide-confined 850 nm high speed VCSELs , 2013, Photonics West - Optoelectronic Materials and Devices.

[12]  Kent D. Choquette,et al.  Error-Free Transmission Over 1-km OM4 Multimode Fiber at 25 Gb/s Using a Single Mode Photonic Crystal Vertical-Cavity Surface-Emitting Laser , 2013, IEEE Photonics Technology Letters.

[13]  Clint L. Schow,et al.  35-Gb/s VCSEL-Based optical link using 32-nm SOI CMOS circuits , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[14]  James A. Lott,et al.  Energy Efficiency of Directly Modulated Oxide-Confined High Bit Rate 850-nm VCSELs for Optical Interconnects , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  C. Kocot,et al.  A 56.1Gb/s NRZ modulated 850nm VCSEL-based optical link , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[16]  Johan S. Gustavsson,et al.  High-speed 850 nm VCSELs operating error free up to 57 Gbit/s , 2013 .

[17]  Hui Li,et al.  85-fJ Dissipated Energy Per Bit at 30 Gb/s Across 500-m Multimode Fiber Using 850-nm VCSELs , 2013, IEEE Photonics Technology Letters.

[18]  Jin-Wei Shi,et al.  Oxide-Relief and Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Extremely Low Energy-to-Data-Rate Ratios for 40 Gbit/s Operations , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  Alex Mutig,et al.  Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C , 2014 .

[20]  Johan S. Gustavsson,et al.  20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL , 2014 .