AlphaSim: Software for Breeding Program Simulation

AlphaSim allows breeders and researchers to simulate genomic data with specific user criteria. AlphaSim is flexible, computationally efficient, and easy to use for a wide range of possible scenarios. AlphaSim can also be used in animal breeding, human genetics, and population genetics.

[1]  A. E. Hoerl,et al.  Ridge regression iterative estimation of the biasing parameter , 1976 .

[2]  J. Woolliams,et al.  Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs , 2015, Genetics Selection Evolution.

[3]  C. Morris,et al.  Rapid and Targeted Introgression of Genes into Popular Wheat Cultivars Using Marker-Assisted Background Selection , 2009, PloS one.

[4]  Yanpeng Wang,et al.  Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew , 2014, Nature Biotechnology.

[5]  R. Bernardo,et al.  Prospects for genomewide selection for quantitative traits in maize , 2007 .

[6]  M. Calus,et al.  Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking , 2013, Genetics.

[7]  Joshua A. Udall,et al.  Breeding for Quantitative Traits in Plants , 2003 .

[8]  Bruce Tier,et al.  A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes , 2011, Genetics Selection Evolution.

[9]  R. Wellmann,et al.  The contribution of dominance to the understanding of quantitative genetic variation. , 2011, Genetics research.

[10]  Y. Doyon,et al.  Precise genome modification in the crop species Zea mays using zinc-finger nucleases , 2009, Nature.

[11]  M. Cooper,et al.  Comparison of Two Breeding Strategies by Computer Simulation , 2003 .

[12]  James Cockram,et al.  An Eight-Parent Multiparent Advanced Generation Inter-Cross Population for Winter-Sown Wheat: Creation, Properties, and Validation , 2014, G3: Genes, Genomes, Genetics.

[13]  J. Hickey,et al.  Reliability of pedigree-based and genomic evaluations in selected populations , 2015, Genetics Selection Evolution.

[14]  R. Wellmann,et al.  Bayesian models with dominance effects for genomic evaluation of quantitative traits. , 2012, Genetics research.

[15]  R. Houston,et al.  Potential of genotyping-by-sequencing for genomic selection in livestock populations , 2015, Genetics Selection Evolution.

[16]  Rita H. Mumm,et al.  The role and basics of computer simulation in support of critical decisions in plant breeding , 2011, Molecular Breeding.

[17]  Jean-Luc Jannink,et al.  Genomic selection in plant breeding: from theory to practice. , 2010, Briefings in functional genomics.

[18]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[19]  N. Wray,et al.  Increasing long-term response to selection , 1994, Genetics Selection Evolution.

[20]  C. R. Henderson Applications of linear models in animal breeding , 1984 .

[21]  Bevan Emma Huang,et al.  AlphaMPSim: flexible simulation of multi-parent crosses , 2014, Bioinform..

[22]  J. Hickey,et al.  Simulated Data for Genomic Selection and Genome-Wide Association Studies Using a Combination of Coalescent and Gene Drop Methods , 2012, G3: Genes | Genomes | Genetics.

[23]  T. Meuwissen Maximizing the response of selection with a predefined rate of inbreeding. , 1997, Journal of animal science.

[24]  J C Whittaker,et al.  Marker-assisted selection using ridge regression. , 2000, Genetical research.

[25]  H. Daetwyler,et al.  The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes , 2012, Genetics Selection Evolution.

[26]  Rajeev K. Varshney,et al.  Imputation of Single Nucleotide Polymorphism Genotypes in Biparental, Backcross, and Topcross Populations with a Hidden Markov Model , 2015 .

[27]  Yanpeng Wang,et al.  Genome editing in rice and wheat using the CRISPR/Cas system , 2014, Nature Protocols.

[28]  S. Hearne,et al.  Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations , 2016, BMC Genomics.

[29]  R. Varshney,et al.  Genomic Selection for Crop Improvement , 2017, Springer International Publishing.