The Use of the Control Variate Technique in Option Pricing

This paper presents a generalized version of the lattice approach to pricing options. It shows how the control variate technique can produce significant improvements in the efficiency of the approach. The control variate technique is illustrated using American puts on dividend and nondividend paying stocks.

[1]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[2]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[3]  Eduardo S. Schwartz The valuation of warrants: Implementing a new approach , 1977 .

[4]  Michael Parkinson,et al.  Option Pricing: The American Put , 1977 .

[5]  P. Boyle Options: A Monte Carlo approach , 1977 .

[6]  Eduardo S. Schwartz,et al.  A continuous time approach to the pricing of bonds , 1979 .

[7]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[8]  Georges Courtadon,et al.  A More Accurate Finite Difference Approximation for the Valuation of Options , 1982, Journal of Financial and Quantitative Analysis.

[9]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.

[10]  M. Rubinstein. Displaced Diffusion Option Pricing , 1983 .

[11]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[12]  S. Ross,et al.  AN INTERTEMPORAL GENERAL EQUILIBRIUM MODEL OF ASSET PRICES , 1985 .

[13]  Kuldeep Shastri,et al.  Valuation by Approximation: A Comparison of Alternative Option Valuation Techniques , 1985, Journal of Financial and Quantitative Analysis.

[14]  Edward C. Blomeyer An Analytic Approximation for the American Put Price for Options on Stocks with Dividends , 1986, Journal of Financial and Quantitative Analysis.

[15]  P. Boyle Option Valuation Using a Three Jump Process , 1986 .

[16]  D. Shanno,et al.  Option Pricing when the Variance Is Changing , 1987, Journal of Financial and Quantitative Analysis.

[17]  Edward Omberg A Note on the Convergence of Binomial‐Pricing and Compound‐Option Models , 1987 .

[18]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[19]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[20]  P. Boyle A Lattice Framework for Option Pricing with Two State Variables , 1988, Journal of Financial and Quantitative Analysis.

[21]  J. Hull Options, futures, and other derivative securities , 1989 .