Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars

The MER rover Opportunity has carried out the first outcrop-scale investigation of ancient sedimentary rocks on Mars. The rocks, exposed in craters and along fissures in Meridiani Planum, are sandstones formed via the erosion and re-deposition of fine grained siliciclastics and evaporites derived from the chemical weathering of olivine basalts by acidic waters. A stratigraphic section more than seven meters thick measured in Endurance crater is dominated by eolian dune and sand sheet facies; the uppermost half meter, however, exhibits festoon cross lamination at a length scale that indicates subaqueous deposition, likely in a playa-like interdune setting. Silicates and sulfate minerals dominate outcrop geochemistry, but hematite and Fe3D3 (another ferric iron phase) make up as much as 11% of the rocks by weight. Jarosite in the outcrop matrix indicates precipitation at low pH. Cements, hematitic concretions, and crystal molds attest to a complex history of early diagenesis, mediated by ambient ground waters. The depositional and early diagenetic paleoenvironment at Meridiani was arid, acidic, and oxidizing, a characterization that places strong constraints on astrobiologial inference. D 2005 Published by Elsevier B.V.

[1]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[2]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[3]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[4]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[5]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[6]  R. Rieder,et al.  Chemistry of Rocks and Soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer , 2004, Science.

[7]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[8]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[9]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[10]  B. Weiss,et al.  Martian Surface Paleotemperatures from Thermochronology of Meteorites , 2005, Science.

[11]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[12]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[13]  Jens Ormö,et al.  A possible terrestrial analogue for haematite concretions on Mars , 2004, Nature.

[14]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[15]  J. Rimstidt,et al.  Jarosite as an indicator of water-limited chemical weathering on Mars , 2004, Nature.

[16]  P H Smith,et al.  Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum , 2004, Science.

[17]  Harold J. Morowitz,et al.  Annihilation of ecosystems by large asteroid impacts on the early Earth , 1989, Nature.

[18]  Jeffrey R. Johnson,et al.  Soils of Eagle Crater and Meridiani Planum at the Opportunity Rover Landing Site , 2004, Science.

[19]  N. O. Snider,et al.  Mantled and exhumed terrains in Terra Meridiani, Mars , 2002 .

[20]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[21]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[22]  G. Mehall,et al.  Miniature Thermal Emission Spectrometer on the Mars Exploration Rovers , 2007 .

[23]  D. Ming,et al.  Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: Possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars , 2005 .

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  Steven W. Squyres,et al.  Geochemical modeling of evaporation processes on Mars: Insight from the sedimentary record at Meridiani Planum , 2005 .

[26]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[27]  Richard V. Morris,et al.  The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars , 2005 .

[28]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[29]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[30]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[31]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[32]  Roger G. Burns,et al.  Ferric sulfates on Mars , 1987 .

[33]  M. Richardson,et al.  Long‐term evolution of transient liquid water on Mars , 2005 .

[34]  A. K. Baird,et al.  Is the Martian lithosphere sulfur rich , 1979 .