Nondegeneracy Conditions for Active Memristive Circuits
暂无分享,去创建一个
[1] Hai Helen Li,et al. Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.
[2] C. Desoer,et al. Degenerate networks and minimal differential equations , 1975 .
[3] Rabinder N Madan,et al. Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.
[4] Luigi Fortuna,et al. Jump Resonance in Driven Chua's Circuit , 2009, Int. J. Bifurc. Chaos.
[5] Volker Mehrmann,et al. Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .
[6] L. Chua,et al. A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .
[7] R. März. Differential algebraic systems anew , 2002 .
[8] Ricardo Riaza,et al. Tree-based characterization of low index circuit configurations without passivity restrictions , 2008, Int. J. Circuit Theory Appl..
[9] S. Iwata,et al. Hybrid Analysis for Circuit Simulation , 2007 .
[10] Ricardo Riaza,et al. Semistate models of electrical circuits including memristors , 2011, Int. J. Circuit Theory Appl..
[11] Timo Reis,et al. Circuit synthesis of passive descriptor systems—a modified nodal approach , 2010 .
[12] L. Chua,et al. A universal circuit for studying and generating chaos. II. Strange attractors , 1993 .
[13] W. Rheinboldt,et al. Theoretical and numerical analysis of differential-algebraic equations , 2002 .
[14] G. Reissig. The index of the standard circuit equations of passive RLCTG-networks does not exceed 2 , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).
[15] Antonino M. Sommariva,et al. State‐space equations of regular and strictly topologically degenerate linear lumped time‐invariant networks: the multiport method , 2001, Int. J. Circuit Theory Appl..
[16] S. Benderli,et al. On SPICE macromodelling of TiO 2 memristors , 2009 .
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] C. Tischendorf,et al. Structural analysis of electric circuits and consequences for MNA , 2000 .
[19] Satoru Iwata,et al. Index characterization of differential–algebraic equations in hybrid analysis for circuit simulation , 2010 .
[20] Linda R. Petzold,et al. Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.
[21] Leon O. Chua,et al. Memristor oscillators , 2008, Int. J. Bifurc. Chaos.
[22] Caren Tischendorf,et al. Topological index‐calculation of DAEs in circuit simulation , 1998 .
[23] Béla Bollobás,et al. Modern Graph Theory , 2002, Graduate Texts in Mathematics.
[24] Martin Hasler,et al. Nonlinear Circuits , 1986 .
[25] Albert C. J. Luo,et al. An Analytical Prediction of Periodic Flows in the Chua Circuit System , 2009, Int. J. Bifurc. Chaos.
[26] T. Bashkow,et al. The A Matrix, New Network Description , 1957 .
[27] Michael Guenther,et al. CAD based electric circuit modeling in industry. Part I: Mathematical structure and index of network equations. Part II: Impact of circuit configurations and parameters , 1999 .
[28] Ricardo Riaza,et al. Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .
[29] Enrique Ponce,et al. Following a saddle-Node of Periodic orbits' bifurcation Curve in Chua's Circuit , 2009, Int. J. Bifurc. Chaos.
[30] Caren Tischendorf,et al. Structural analysis of electric circuits and consequences for MNA , 2000, Int. J. Circuit Theory Appl..
[31] L. Chua. Memristor-The missing circuit element , 1971 .
[32] B. Andrásfai. Graph Theory: Flows, Matrices , 1991 .
[33] P. Rentrop,et al. Differential-Algebraic Equations , 2006 .