Pairwise ranking: choice of method can produce arbitrarily different rank order
暂无分享,去创建一个
[1] P. Harker. Incomplete pairwise comparisons in the analytic hierarchy process , 1987 .
[2] P. Rózsa,et al. Transitive matrices and their applications , 1999 .
[4] S. Gaubert,et al. Asymptotics of the Perron eigenvalue and eigenvector using Max-algebra , 1998 .
[5] Lajos Rónyai,et al. On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..
[6] Yin-Feng Xu,et al. Consensus models for AHP group decision making under row geometric mean prioritization method , 2010, Decis. Support Syst..
[7] H. M. Antia. Algebraic Eigenvalue Problem , 2012 .
[8] G. Ziegler. Lectures on Polytopes , 1994 .
[9] C Rajakumar,et al. Algebraic Eigenvalue Problem in Boundary Elements , 2004 .
[10] Ludwig Elsner,et al. Max-algebra and pairwise comparison matrices , 2004 .
[11] Yuan Yao,et al. Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..
[12] G. Crawford. The geometric mean procedure for estimating the scale of a judgement matrix , 1987 .
[13] David F. Gleich,et al. Rank aggregation via nuclear norm minimization , 2011, KDD.
[14] P. Butkovic. Max-linear Systems: Theory and Algorithms , 2010 .
[15] T. Saaty,et al. The Analytic Hierarchy Process , 1985 .
[16] ‖ut,et al. The Analysis of the Principal Eigenvector of Pairwise Comparison Matrices András Farkas , 2007 .
[17] Ravindra B. Bapat,et al. A max version of the Perron-Frobenius theorem , 1998 .
[18] G. Ottaviani,et al. Matrices with eigenvectors in a given subspace , 2010, 1012.1016.