Pairwise ranking: choice of method can produce arbitrarily different rank order

We examine three methods for ranking by pairwise comparison: Principal Eigenvector, HodgeRank and Tropical Eigenvector. It is shown that the choice of method can produce arbitrarily different rank order.To be precise, for any two of the three methods, and for any pair of rankings of at least four items, there exists a comparison matrix for the items such that the rankings found by the two methods are the prescribed ones. We discuss the implications of this result in practice, study the geometry of the methods, and state some open problems.

[1]  P. Harker Incomplete pairwise comparisons in the analytic hierarchy process , 1987 .

[2]  P. Rózsa,et al.  Transitive matrices and their applications , 1999 .

[4]  S. Gaubert,et al.  Asymptotics of the Perron eigenvalue and eigenvector using Max-algebra , 1998 .

[5]  Lajos Rónyai,et al.  On optimal completion of incomplete pairwise comparison matrices , 2010, Math. Comput. Model..

[6]  Yin-Feng Xu,et al.  Consensus models for AHP group decision making under row geometric mean prioritization method , 2010, Decis. Support Syst..

[7]  H. M. Antia Algebraic Eigenvalue Problem , 2012 .

[8]  G. Ziegler Lectures on Polytopes , 1994 .

[9]  C Rajakumar,et al.  Algebraic Eigenvalue Problem in Boundary Elements , 2004 .

[10]  Ludwig Elsner,et al.  Max-algebra and pairwise comparison matrices , 2004 .

[11]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[12]  G. Crawford The geometric mean procedure for estimating the scale of a judgement matrix , 1987 .

[13]  David F. Gleich,et al.  Rank aggregation via nuclear norm minimization , 2011, KDD.

[14]  P. Butkovic Max-linear Systems: Theory and Algorithms , 2010 .

[15]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[16]  ‖ut,et al.  The Analysis of the Principal Eigenvector of Pairwise Comparison Matrices András Farkas , 2007 .

[17]  Ravindra B. Bapat,et al.  A max version of the Perron-Frobenius theorem , 1998 .

[18]  G. Ottaviani,et al.  Matrices with eigenvectors in a given subspace , 2010, 1012.1016.