Quantitative determination of the generalized stability of Fe-based binary alloys

[1]  T. Tsuchiyama,et al.  Quantitative Evaluation of Dislocation Density in As-quenched Martensite with Tetragonality by X-ray Line Profile Analysis in a Medium-carbon Steel , 2022, Acta Materialia.

[2]  Jinglian Du,et al.  Thermo-kinetic connectivity by integrating thermo-kinetic correlation and generalized stability , 2022, Journal of Materials Science & Technology.

[3]  Tianle Wang,et al.  Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook , 2022, Journal of Magnesium and Alloys.

[4]  I. Ryu,et al.  Dislocation interactions at the grain boundary in FCC bicrystals: An atomistically-informed dislocation dynamics study , 2021, Acta Materialia.

[5]  Qingyuan Wang,et al.  Strain rate dependency of dislocation plasticity , 2020, Nature Communications.

[6]  B. Zhang,et al.  Dislocation–grain boundary interaction-based discrete dislocation dynamics modeling and its application to bicrystals with different misorientations , 2021, Acta Materialia.

[7]  F. Liu,et al.  Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations , 2020 .

[8]  L. Zepeda-Ruiz,et al.  Atomistic insights into metal hardening , 2020, Nature Materials.

[9]  N. Bertin,et al.  Frontiers in the Simulation of Dislocations , 2020 .

[10]  M. Baskes,et al.  Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential , 2019 .

[11]  K. Zhu,et al.  Evolution of dislocation density in bainitic steel: Modeling and experiments , 2018 .

[12]  Zhengyi Jiang,et al.  Thermomechanical processing of advanced high strength steels , 2018 .

[13]  B. Liu,et al.  Transformation induced softening and plasticity in high entropy alloys , 2018 .

[14]  Vasily V. Bulatov,et al.  Probing the limits of metal plasticity with molecular dynamics simulations , 2017, Nature.

[15]  B. Liu,et al.  Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation , 2016 .

[16]  Pierre Hirel,et al.  Atomsk: A tool for manipulating and converting atomic data files , 2015, Comput. Phys. Commun..

[17]  Liyuan Wang,et al.  Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy , 2015 .

[18]  Young Won Chang,et al.  Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron , 2011 .

[19]  Alexander Stukowski,et al.  Extracting dislocations and non-dislocation crystal defects from atomistic simulation data , 2010 .

[20]  Shigekazu Morito,et al.  Dislocation density within lath martensite in Fe-C and Fe-Ni alloys , 2003 .

[21]  P. Sanders,et al.  Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis , 1998 .

[22]  Tamás Ungár,et al.  The effect of dislocation contrast on x‐ray line broadening: A new approach to line profile analysis , 1996 .

[23]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[24]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[25]  P. Kelly,et al.  The role of carbon in the strength of ferrous martensite , 1970 .

[26]  Geoffrey Ingram Taylor,et al.  The Mechanism of Plastic Deformation of Crystals. Part II. Comparison with Observations , 1934 .