A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation

We study the solution of the focusing nonlinear Schrodinger equation in the semiclassical limit. Numerical solutions are presented for four different kinds of initial data, of which three are analytic and one is nonanalytic. We verify numerically the weak convergence of the oscillatory solution by examining the strong convergence of the spatial average of the solution.

[1]  R. Krasny A study of singularity formation in a vortex sheet by the point-vortex approximation , 1986, Journal of Fluid Mechanics.

[2]  S. Croucher,et al.  Surveys , 1965, Understanding Communication Research Methods.

[3]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[4]  P. Miller,et al.  On the semiclassical limit of the focusing nonlinear Schrödinger equation , 1998 .

[5]  D. Kinderlehrer,et al.  Oscillation theory, computation, and methods of compensated compactness , 1986 .

[6]  C. D. Levermore,et al.  Singular limits of dispersive waves , 1994 .

[7]  Jonathan Goodman,et al.  On dispersive difference schemes. I , 1988 .

[8]  Russel E. Caflisch,et al.  Singular solutions and ill-posedness for the evolution of vortex sheets , 1989 .

[9]  Athanassios S. Fokas,et al.  Important developments in soliton theory , 1993 .

[10]  Grischkowsky,et al.  Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. , 1989, Physical review letters.

[11]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[12]  P. Lax,et al.  Dispersive approximations in fluid dynamics , 1991 .

[13]  S. I. Braginskii Reviews of Plasma Physics , 1965 .

[14]  J. Nathan Kutz,et al.  Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation , 1999 .

[15]  M. G. Forest,et al.  Onset of Oscillations in Nonsoliton Pulses in Nonlinear Dispersive Bers , 1997 .

[16]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[17]  B. Dubrovin,et al.  Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory , 1989 .

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[20]  U. Chatterjee,et al.  Effect of unconventional feeds on production cost, growth performance and expression of quantitative genes in growing pigs , 2022, Journal of the Indonesian Tropical Animal Agriculture.

[21]  J. Bronski Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem , 1996 .

[22]  F. Tian,et al.  On the Whitham equations for the semiclassical limit of the defocusing nonlinear Schrödinger equation , 1999 .

[23]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[24]  S. Wabnitz,et al.  Analytical theory of guiding-center nonreturn-to-zero and return-to-zero signal transmission in normally dispersive nonlinear optical fibers. , 1995, Optics letters.