Subquadratic-Time Algorithms for Abelian Stringology Problems
暂无分享,去创建一个
Jakub Radoszewski | Tomasz Kociumaka | Bartlomiej Wisniewski | J. Radoszewski | Bartlomiej Wisniewski | T. Kociumaka
[1] Zsuzsanna Lipták,et al. Searching for Jumbled Patterns in Strings , 2009, Stringology.
[2] Arnaud Lefebvre,et al. Quasi-linear Time Computation of the Abelian Periods of a Word , 2012, Stringology.
[3] Moshe Lewenstein,et al. Clustered Integer 3SUM via Additive Combinatorics , 2015, STOC.
[4] Wojciech Rytter,et al. Efficient Indexes for Jumbled Pattern Matching with Constant-Sized Alphabet , 2013, ESA.
[5] Mohammad Sohel Rahman,et al. Indexing permutations for binary strings , 2010, Inf. Process. Lett..
[6] Arnaud Lefebvre,et al. Computing Abelian Periods in Words , 2011, Stringology.
[7] Zsuzsanna Lipták,et al. On Table Arrangements, Scrabble Freaks, and Jumbled Pattern Matching , 2010, FUN.
[8] Wojciech Rytter,et al. Fast Algorithms for Abelian Periods in Words and Greatest Common Divisor Queries , 2013, STACS.
[9] Gad M. Landau,et al. Binary Jumbled Pattern Matching via All-Pairs Shortest Paths , 2014, ArXiv.
[10] Lucian Ilie,et al. Fine and Wilf's Theorem for Abelian Periods , 2006, Bull. EATCS.
[11] Wojciech Rytter,et al. A note on efficient computation of all Abelian periods in a string , 2013, Inf. Process. Lett..
[12] P. Erdos. Some unsolved problems. , 1957 .
[13] Hideo Bannai,et al. Computing Abelian Covers and Abelian Runs , 2014, Stringology.
[14] Moshe Lewenstein,et al. On Hardness of Jumbled Indexing , 2014, ICALP.
[15] Mohammad Sohel Rahman,et al. Sub-quadratic time and linear space data structures for permutation matching in binary strings , 2012, J. Discrete Algorithms.
[16] William F. Smyth,et al. Weak repetitions in strings , 1997 .