Partially coupled extended stochastic gradient algorithm for nonlinear multivariable output error moving average systems

Purpose The purpose of this paper is to study the parameter estimation problem of nonlinear multivariable output error moving average systems. Design/methodology/approach A partially coupled extended stochastic gradient algorithm is presented for nonlinear multivariable systems by using the decomposition technique. Findings The proposed algorithm can realize the coupled computation of the parameter estimates between subsystems. Originality/value This paper develops a coupled parameter estimation algorithm for nonlinear multivariable systems and directly estimates the system parameters without over-parameterization.

[1]  Fei Liu,et al.  Linear Optimal Unbiased Filter for Time-Variant Systems Without Apriori Information on Initial Conditions , 2017, IEEE Transactions on Automatic Control.

[2]  Feng Ding,et al.  Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..

[3]  Feng Ding,et al.  Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems , 2011, Comput. Math. Appl..

[4]  Wan Xiangkui,et al.  A T-wave alternans assessment method based on least squares curve fitting technique , 2016 .

[5]  F. Ding,et al.  Least squares and stochastic gradient parameter estimation for multivariable nonlinear Box‐Jenkins models based on the auxiliary model and the multi‐innovation identification theory , 2012 .

[6]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[7]  Ling Xu,et al.  A proportional differential control method for a time-delay system using the Taylor expansion approximation , 2014, Appl. Math. Comput..

[8]  Maryam Dehghani,et al.  Identification of nonlinear MIMO block-oriented systems with moving average noises using gradient based and least squares based iterative algorithms , 2012, Neurocomputing.

[9]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[10]  Feng Ding,et al.  Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems , 2014, J. Frankl. Inst..

[11]  Feng Ding,et al.  The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique , 2016, Signal Process..

[12]  Ling Xu,et al.  Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration , 2015 .

[13]  Robert E. Kearney,et al.  Subspace Identification of SISO Hammerstein Systems: Application to Stretch Reflex Identification , 2013, IEEE Transactions on Biomedical Engineering.

[14]  Kewen Wang,et al.  An Improved Identification Method for Multivariable System , 2014 .

[15]  Fei Liu,et al.  Fast Kalman-Like Optimal Unbiased FIR Filtering With Applications , 2016, IEEE Transactions on Signal Processing.

[16]  Wenge Zhang,et al.  Decomposition based least squares iterative estimation algorithm for output error moving average systems , 2014 .

[17]  Maryam Dehghani,et al.  Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm. , 2014, ISA transactions.

[18]  Huiping Li,et al.  Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability , 2016, Autom..

[19]  Chang Tan,et al.  A novel particle swarm optimization based robust H-infinity control for rotorcrafts , 2014 .

[20]  Peter C. Young,et al.  Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model , 2015, Autom..

[21]  Emmanuel D. Blanchard,et al.  Parameter estimation for mechanical systems via an explicit representation of uncertainty , 2009 .

[22]  T. Hayat,et al.  Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique , 2017 .

[23]  Ling Xu,et al.  Application of the Newton iteration algorithm to the parameter estimation for dynamical systems , 2015, J. Comput. Appl. Math..

[24]  Brett Ninness,et al.  On Gradient-Based Search for Multivariable System Estimates , 2008, IEEE Transactions on Automatic Control.

[25]  F. Ding,et al.  Coupled gradient algorithm for multivariable nonlinear systems , 2015, The 27th Chinese Control and Decision Conference (2015 CCDC).

[26]  Fei Liu,et al.  Minimum variance unbiased FIR filter for discrete time-variant systems , 2015, Autom..

[27]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[28]  Huiping Li,et al.  On Neighbor Information Utilization in Distributed Receding Horizon Control for Consensus-Seeking , 2016, IEEE Transactions on Cybernetics.

[29]  Biao Huang,et al.  FIR model identification of multirate processes with random delays using EM algorithm , 2013 .

[30]  Qingxia Li,et al.  Array Factor Forming for Image Reconstruction of One-Dimensional Nonuniform Aperture Synthesis Radiometers , 2016, IEEE Geoscience and Remote Sensing Letters.

[31]  F. Ding,et al.  Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems , 2016 .

[32]  Laurent Bako,et al.  Parameterization and identification of multivariable state-space systems: A canonical approach , 2011, Autom..

[33]  W. Zheng Least-squares identification of a class of multivariable systems with correlated disturbances , 1999 .

[34]  Feng Ding,et al.  Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model , 2016, Autom..

[35]  Feng Ding,et al.  Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition , 2016, J. Comput. Appl. Math..

[36]  Yu Zhu,et al.  Stochastic gradient identification of Wiener system with maximum mutual information criterion , 2011 .

[37]  Ruifeng Ding,et al.  Data Filtering Based Stochastic Gradient Algorithms for Multivariable CARAR-Like Systems , 2013 .

[38]  Feng Ding,et al.  The recursive least squares identification algorithm for a class of Wiener nonlinear systems , 2016, J. Frankl. Inst..

[39]  Feng Ding,et al.  An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering , 2016, J. Frankl. Inst..

[40]  Stéphane Lecoeuche,et al.  Propagator-based methods for recursive subspace model identification , 2008, Signal Process..

[41]  F. Ding,et al.  Filtering-based iterative identification for multivariable systems , 2016 .

[42]  Matija Fajdiga,et al.  Parameter identification for a low-density-foam material model using numerical optimisation procedures , 2014 .

[43]  Ling Xu,et al.  The damping iterative parameter identification method for dynamical systems based on the sine signal measurement , 2016, Signal Process..

[44]  Jian Pan,et al.  Image noise smoothing using a modified Kalman filter , 2016, Neurocomputing.