Generalized Pythagoras Trees: A Fractal Approach to Hierarchy Visualization

Through their recursive definition, many fractals have an inherent hierarchical structure. An example are binary branching Pythagoras Trees. By stopping the recursion in certain branches, a binary hierarchy can be encoded and visualized. But this binary encoding is an obstacle for representing general hierarchical data such as file systems or phylogenetic trees, which usually branch into more than two subhierarchies. We hence extend Pythagoras Trees to arbitrarily branching trees by adapting the geometry of the original fractal approach. Each vertex in the hierarchy is visualized as a rectangle sized according to a metric. We analyze several visual parameters such as length, width, order, and color of the nodes against the use of different metrics. Interactions help to zoom, browse, and filter the hierarchy. The usefulness of our technique is illustrated by two case studies visualizing directory structures and a large phylogenetic tree. We compare our approach with existing tree diagrams and discuss questions of geometry, perception, readability, and aesthetics.

[1]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[2]  M. Wertheimer Untersuchungen zur Lehre von der Gestalt. II , 1923 .

[3]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[4]  L. Harmon,et al.  OneZoom: A Fractal Explorer for the Tree of Life , 2012, PLoS biology.

[5]  Ulrik Brandes,et al.  Computing Voronoi Treemaps: Faster, Simpler, and Resolution‐independent , 2012, Comput. Graph. Forum.

[6]  Hsu-Chun Yen,et al.  Journal of Graph Algorithms and Applications on Balloon Drawings of Rooted Trees , 2022 .

[7]  Rick Kazman,et al.  Research report. Interacting with huge hierarchies: beyond cone trees , 1995, Proceedings of Visualization 1995 Conference.

[8]  Hideki Koike,et al.  Fractal approaches for visualizing huge hierarchies , 1993, Proceedings 1993 IEEE Symposium on Visual Languages.

[9]  Charles Wetherell,et al.  Tidy Drawings of Trees , 1979, IEEE Transactions on Software Engineering.

[10]  Luc Devroye,et al.  The Botanical Beauty of Random Binary Trees , 1995, Graph Drawing.

[11]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[12]  M. Holton,et al.  Strands, Gravity and Botanical Tree Imagery , 1994, Comput. Graph. Forum.

[13]  Michael J. McGuffin,et al.  Quantifying the Space-Efficiency of 2D Graphical Representations of Trees , 2010, Inf. Vis..

[14]  Hans-Jörg Schulz,et al.  Treevis.net: A Tree Visualization Reference , 2011, IEEE Computer Graphics and Applications.

[15]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[16]  Jarke J. van Wijk,et al.  Botanical visualization of huge hierarchies , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[17]  Michael Balzer,et al.  Voronoi treemaps for the visualization of software metrics , 2005, SoftVis '05.

[18]  Keith Andrews,et al.  Information Slices: Visualising and Exploring Large Hierarchies using Cascading, Semi-Circular Discs , 1998 .

[19]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[20]  Michael Burch,et al.  Evaluation of Traditional, Orthogonal, and Radial Tree Diagrams by an Eye Tracking Study , 2011, IEEE Transactions on Visualization and Computer Graphics.

[21]  Matthew O. Ward,et al.  InterRing: A Visual Interface for Navigating and Manipulating Hierarchies , 2003, Inf. Vis..

[22]  Hans-Joerg Schulz,et al.  A Visual Survey of Tree Visualization , 2010 .

[23]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[24]  P. Machado,et al.  Computing Aesthetics , 1998 .

[25]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[26]  Jean-Philippe Domenger,et al.  Bubble Tree Drawing Algorithm , 2004, ICCVG.

[27]  Hideki Koike,et al.  Fractal views: a fractal-based method for controlling information display , 1995, TOIS.

[28]  Michael Burch,et al.  Indented Pixel Tree Plots , 2010, ISVC.

[29]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .