Bin packing approximation algorithms: Survey and classification
暂无分享,去创建一个
Daniele Vigo | János Csirik | Edward G. Coffman | Silvano Martello | Gábor Galambos | J. Csirik | E. Coffman | S. Martello | D. Vigo | G. Galambos
[1] G Galambos. Parametric lower bound for on-line bin-packing , 1986 .
[2] Richard J. Anderson,et al. Parallel Approximation Algorithms for Bin Packing , 1988, Inf. Comput..
[3] Hadas Shachnai,et al. Tight bounds for online class-constrained packing , 2002, Theor. Comput. Sci..
[4] Chak-Kuen Wong,et al. Linear time-approximation algorithms for bin packing , 2000, Oper. Res. Lett..
[5] Michael J. Magazine,et al. Assembly line balancing as generalized bin packing , 1982, Oper. Res. Lett..
[6] György Dósa,et al. The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I) <= 11/9OPT(I) + 6/9 , 2007, ESCAPE.
[7] Hans Kellerer,et al. On-Line Algorithms for Cardinality Constrained Bin Packing Problems , 2001, ISAAC.
[8] Guochuan Zhang,et al. Worst-Case analysis of the FFH algorithm for online variable-sized bin packing , 1996, Computing.
[9] Ronald L. Graham,et al. Bounds for certain multiprocessing anomalies , 1966 .
[10] David R. Karger,et al. A better algorithm for an ancient scheduling problem , 1994, SODA '94.
[11] Zhen Liu,et al. Bin-packing with fragile objects and frequency allocation in cellular networks , 2009, Wirel. Networks.
[12] Ralph E. Gomory,et al. A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .
[13] Leah Epstein,et al. The maximum resource bin packing problem , 2006, Theor. Comput. Sci..
[14] Guochuan Zhang,et al. Tight performance bound ofAFBk bin packing , 1997 .
[15] D. Eppstein. Foreword to special issue on SODA 2002 , 2007, TALG.
[16] Eduardo C. Xavier,et al. The class constrained bin packing problem with applications to video-on-demand , 2008, Theor. Comput. Sci..
[17] David B. Shmoys,et al. Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[18] G. S. Lueker,et al. Bin packing can be solved within 1 + ε in linear time , 1981 .
[19] Guochuan Zhang,et al. Bounded Space On-Line Variable-Sized Bin Packing , 1997, Acta Cybern..
[20] André van Vliet. On the Asymptotic Worst Case Behavior of Harmonic Fit , 1996, J. Algorithms.
[21] Guochuan Zhang,et al. Bin Packing of Selfish Items , 2008, WINE.
[22] Hans Kellerer,et al. A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 1999, RANDOM-APPROX.
[23] Barun Chandra. Does Randomization Help in On-Line Bin Packing? , 1992, Inf. Process. Lett..
[24] Rongheng Li,et al. The proof of FFD(L) < -OPT(L) + 7/9 , 1997 .
[25] Gerhard J. Woeginger,et al. Online Algorithms , 1998, Lecture Notes in Computer Science.
[26] János Csirik,et al. A Classification Scheme for Bin Packing Theory , 2007, Acta Cybern..
[27] Hans Kellerer,et al. Algorithms for on-line bin-packing problems with cardinality constraints , 2004, Discret. Appl. Math..
[28] Leah Epstein,et al. On Bin Packing with Conflicts , 2008, SIAM J. Optim..
[29] Zhen Liu,et al. Bin-Packing with Fragile Objects , 2002, IFIP TCS.
[30] Amos Fiat,et al. New algorithms for an ancient scheduling problem , 1992, STOC '92.
[31] Jeffrey B. Sidney,et al. Bin packing using semi-ordinal data , 1996, Oper. Res. Lett..
[32] David S. Johnson,et al. Near-optimal bin packing algorithms , 1973 .
[33] Leah Epstein,et al. Tight results for Next Fit and Worst Fit with resource augmentation , 2010, Theor. Comput. Sci..
[34] Tami Tamir,et al. Polynominal time approximation schemes for class-constrained packing problem , 2000, APPROX.
[35] Frank D. Murgolo. An Efficient Approximation Scheme for Variable-Sized Bin Packing , 1987, SIAM J. Comput..
[36] Edward G. Coffman,et al. Dynamic Bin Packing , 1983, SIAM J. Comput..
[37] Luke Finlay,et al. Online LIB problems: Heuristics for Bin Covering and lower bounds for Bin Packing , 2005, RAIRO Oper. Res..
[38] D. T. Lee,et al. A simple on-line bin-packing algorithm , 1985, JACM.
[39] Hadas Shachnai,et al. Approximation Schemes for Packing with Item Fragmentation , 2007, Theory of Computing Systems.
[40] D. T. Lee,et al. On-Line Bin Packing in Linear Time , 1989, J. Algorithms.
[41] Michael E. Saks,et al. An on-line graph coloring algorithm with sublinear performance ratio , 1989, Discret. Math..
[42] J. B. G. Frenk,et al. A Simple Proof of Liang's Lower Bound for On-Line bin Packing and the Extension to the Parametric Case , 1993, Discret. Appl. Math..
[43] Guochuan Zhang,et al. Online bin packing of fragile objects with application in cellular networks , 2007, J. Comb. Optim..
[44] Joan Boyar,et al. The Accommodating Function: A Generalization of the Competitive Ratio , 2001, SIAM J. Comput..
[45] Gerhard J. Woeginger,et al. Repacking helps in bounded space on-line bind-packing , 1993, Computing.
[46] Brenda S. Baker,et al. A New Proof for the First-Fit Decreasing Bin-Packing Algorithm , 1985, J. Algorithms.
[47] Gregory Gutin,et al. Batched bin packing , 2005, Discret. Optim..
[48] Gerhard J. Woeginger,et al. An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..
[49] L. Epstein,et al. Approximation schemes for packing splittable items with cardinality constraints , 2007 .
[50] Errol L. Lloyd,et al. Partially Dynamic bin Packing can be Solved Within 1 + \varepsilon in (Amortized) Polylogarithmic Time , 1997, Inf. Process. Lett..
[51] Joseph Y.-T. Leung,et al. Combinatorial analysis of an efficient algorithm for processor and storage allocation , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).
[52] György Turán,et al. On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..
[53] Joan Boyar,et al. The relative worst order ratio for online algorithms , 2007, TALG.
[54] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[55] J. Baewicz,et al. A linear time algorithm for restricted bin packing and scheduling problems , 1983 .
[56] José R. Correa,et al. A fast asymptotic approximation scheme for bin packing with rejection , 2008, Theor. Comput. Sci..
[57] Chak-Kuen Wong,et al. Bin Packing with Geometric Constraints in Computer Network Design , 1978, Oper. Res..
[58] Errol L. Lloyd,et al. Fully Dynamic Algorithms for Bin Packing: Being (Mostly) Myopic Helps , 1993, SIAM J. Comput..
[59] Hans Kellerer,et al. A 5/4 Linear Time Bin Packing Algorithm , 2000, J. Comput. Syst. Sci..
[60] Leah Epstein. Bin Packing with Rejection Revisited , 2008, Algorithmica.
[61] Gerhard J. Woeginger,et al. On-line bin packing — A restricted survey , 1995, Math. Methods Oper. Res..
[62] Leah Epstein. Online Bin Packing with Cardinality Constraints , 2006, SIAM J. Discret. Math..
[63] David S. Johnson. The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.
[64] David S. Johnson,et al. Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..
[65] Yuval Rabani,et al. A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..
[66] Raphael Rom,et al. Packet scheduling with fragmentation , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.
[67] Sartaj Sahni,et al. Algorithms for Scheduling Independent Tasks , 1976, J. ACM.
[68] C. Kenyon. Best-fit bin-packing with random order , 1996, SODA '96.
[69] André van Vliet,et al. An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..
[70] LEAH EPSTEIN,et al. New Bounds for Variable-Sized Online Bin Packing , 2003, SIAM J. Comput..
[71] Mihály Csaba Markót,et al. Improved lower bounds for semi-online bin packing problems , 2008, Computing.
[72] Leah Epstein,et al. Class constrained bin packing revisited , 2010, Theor. Comput. Sci..
[73] Jeffrey D. Ullman,et al. Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..
[74] Frank M. Liang. A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..
[75] Klaus Jansen,et al. An asymptotic fully polynomial time approximation scheme for bin covering , 2003, Theor. Comput. Sci..
[76] D. Simchi-Levi. New worst‐case results for the bin‐packing problem , 1994 .
[77] Edward G. Coffman,et al. Probabilistic analysis of packing and partitioning algorithms , 1991, Wiley-Interscience series in discrete mathematics and optimization.
[78] Vittorio Bilò. On the packing of selfish items , 2006, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.
[79] David S. Johnson,et al. Bounded Space On-Line Bin Packing: Best Is Better than First , 1991, SODA '91.
[80] Leah Epstein,et al. Selfish Bin Packing , 2008, Algorithmica.
[81] János Csirik. An on-line algorithm for variable-sized bin packing , 2004, Acta Informatica.
[82] Jeffrey D. Ullman,et al. Worst-case analysis of memory allocation algorithms , 1972, STOC.
[83] Yossi Matias,et al. Scheduling space-sharing for internet advertising , 2002, Journal of Scheduling.
[84] David B. Shmoys,et al. A packing problem you can almost solve by sitting on your suitcase , 1986 .
[85] David S. Johnson,et al. A 71/60 theorem for bin packing , 1985, J. Complex..
[86] Edward G. Coffman,et al. Bin packing with divisible item sizes , 1987, J. Complex..
[87] Frank D. Murgolo. Anomalous behavior in bin packing algorithms , 1988, Discret. Appl. Math..
[88] Eugene L. Lawler,et al. Sequencing and scheduling: algorithms and complexity , 1989 .
[89] Raphael Rom,et al. Bin Packing with Item Fragmentation , 2001, WADS.
[90] Leah Epstein,et al. Online bin packing with resource augmentation , 2007, Discret. Optim..
[91] D. K. Friesen,et al. Variable Sized Bin Packing , 1986, SIAM J. Comput..
[92] Gyula Y. Katona. Edge Disjoint Polyp Packing , 1997, Discret. Appl. Math..
[93] Richard M. Karp,et al. An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[94] Giorgio Gambosi,et al. On-Line Maintenance of an Approximate Bin-Packing Solution , 1997, Nord. J. Comput..
[95] David S. Johnson,et al. Approximation Algorithms for Bin-Packing — An Updated Survey , 1984 .
[96] Guochuan Zhang,et al. A New Version of On-line Variable-sized Bin Packing , 1997, Discret. Appl. Math..
[97] Edward G. Coffman,et al. An Application of Bin-Packing to Multiprocessor Scheduling , 1978, SIAM J. Comput..
[98] Yossi Azar,et al. On-line bin-stretching , 1998, Theor. Comput. Sci..
[99] Jérôme Monnot,et al. Bridging gap between standard and differential polynomial approximation: The case of bin-packing , 1999 .
[100] Claire Mathieu,et al. Better approximation algorithms for bin covering , 2001, SODA '01.
[101] Gerhard J. Woeginger. Improved Space for Bounded-Space, On-Line Bin-Packing , 1993, SIAM J. Discret. Math..
[102] Yong He,et al. Bin packing problems with rejection penalties and their dual problems , 2006, Inf. Comput..
[103] Charles U. Martel. A linear time bin-packing algorithm , 1985 .
[104] Eugene L. Lawler,et al. Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.
[105] David S. Johnson,et al. Approximation Algorithms for Bin Packing Problems: A Survey , 1981 .
[106] Vangelis Th. Paschos,et al. Differential Approximation Algorithms for Some Combinatorial Optimization Problems , 1998, Theor. Comput. Sci..
[107] Michael B. Richey,et al. Improved bounds for harmonic-based bin packing algorithms , 1991, Discret. Appl. Math..
[108] Herb Schwetman,et al. Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.
[109] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[110] Kaihong Xu,et al. The Asymptotic Worst-Case Behavior of the FFD Heuristic for Small Items , 2000, J. Algorithms.
[111] Weizhen Mao,et al. Tight Worst-Case Performance Bounds for Next-k-Fit Bin Packing , 1993, SIAM J. Comput..
[112] Hans Kellerer,et al. Cardinality constrained bin‐packing problems , 1999, Ann. Oper. Res..
[113] Noga Alon,et al. Approximation schemes for scheduling , 1997, SODA '97.
[114] Giorgio Gambosi,et al. Algorithms for the Relaxed Online Bin-Packing Model , 2000, SIAM J. Comput..
[115] József Békési,et al. New lower bounds for certain classes of bin packing algorithms , 2010, Theor. Comput. Sci..
[116] David S. Johnson,et al. Fast Allocation Algorithms , 1972, SWAT.
[117] Edward F. Grove. Online bin packing with lookahead , 1995, SODA '95.
[118] Leah Epstein,et al. More on online bin packing with two item sizes , 2008, Discret. Optim..
[119] Philippe Flajolet,et al. Analysis of algorithms , 2000, Random Struct. Algorithms.
[120] Ronald L. Graham,et al. Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.
[121] Gerhard J. Woeginger,et al. New lower and upper bounds for on-line scheduling , 1994, Oper. Res. Lett..
[122] Michael A. Langston,et al. Online variable-sized bin packing , 1989, Discret. Appl. Math..
[123] George L. Nemhauser,et al. Handbooks in operations research and management science , 1989 .
[124] Yossi Azar,et al. Fair versus Unrestricted Bin Packing , 2002, Algorithmica.
[125] R. Gomory,et al. A Linear Programming Approach to the Cutting-Stock Problem , 1961 .
[126] C. Mandal,et al. Complexity of fragmentable object bin packing and an application , 1998 .
[127] Daniele Vigo,et al. Bin Packing Approximation Algorithms: Combinatorial Analysis , 1999, Handbook of Combinatorial Optimization.
[128] G. Young,et al. A note on an open‐end bin packing problem , 2001 .
[129] Jr. E. G. Coffman. An Introduction to Combinatorial Models of Dynamic Storage Allocation , 1983 .
[130] Donna J. Brown,et al. A Lower Bound for On-Line One-Dimensional Bin Packing Algorithms. , 1979 .
[131] Steven S. Seiden,et al. On the online bin packing problem , 2001, JACM.
[132] Donald K. Friesen,et al. Tighter Bounds for the Multifit Processor Scheduling Algorithm , 1984, SIAM J. Comput..
[133] Klaus Jansen,et al. Approximation Algorithms for Time Constrained Scheduling , 1997, Inf. Comput..
[134] Joseph Y.-T. Leung,et al. Bin packing: Maximizing the number of pieces packed , 2004, Acta Informatica.
[135] Susan Fera. Assmann. Problems in discrete applied mathematics , 1983 .
[136] Alberto Caprara,et al. Worst-case analysis of the subset sum algorithm for bin packing , 2004, Oper. Res. Lett..
[137] Ronald L. Graham,et al. Bounds on multiprocessing anomalies and related packing algorithms , 1972, AFIPS '72 (Spring).
[138] János Csirik,et al. The Parametric Behavior of the First-Fit Decreasing Bin Packing Algorithm , 1993, J. Algorithms.
[139] David C. Fisher. Next-fit packs a list and its reverse into the same number of bins , 1988 .
[140] Sanjeev Khanna,et al. A Polynomial Time Approximation Scheme for the Multiple Knapsack Problem , 2005, SIAM J. Comput..
[141] János Csirik,et al. Resource augmentation for online bounded space bin packing , 2000, J. Algorithms.
[142] Yossi Azar,et al. Fair versus Unrestricted Bin Packing , 2000, SWAT.
[143] Rudolf Berghammer,et al. A linear approximation algorithm for bin packing with absolute approximation factor 3/2 , 2003, Sci. Comput. Program..
[144] Michael A. Langston,et al. Improved 0/1-interchange scheduling , 1982, BIT.
[145] Leah Epstein,et al. Resource augmented semi-online bounded space bin packing , 2009, Discret. Appl. Math..
[146] Solomon W. Golomb,et al. On Certain Nonlinear Recurring Sequences , 1963 .
[147] Steven S. Seiden. An Optimal Online Algorithm for Bounded Space Variable-Sized Bin Packing , 2001, SIAM J. Discret. Math..
[148] Donald K. Friesen,et al. Analysis of a Hybrid Algorithm for Packing Unequal Bins , 1988, SIAM J. Comput..
[149] Edward G. Coffman,et al. A Tight Asymptotic Bound for Next-Fit-Decreasing Bin-Packing , 1981 .
[150] Andrew Chi-Chih Yao,et al. Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.
[151] W. Mao. Besk-k-Fit bin packing , 2005, Computing.
[152] Richard E. Ladner,et al. Windows scheduling as a restricted version of bin packing , 2007, TALG.
[153] Leah Epstein,et al. On-Line Maximizing the Number of Items Packed in Variable-Sized Bins , 2002, Acta Cybern..
[154] L. Epstein. On online bin packing with LIB constraints , 2009 .
[155] Prabhu Manyem,et al. Approximation Lower Bounds in Online LIB Bin Packing and Covering , 2003, J. Autom. Lang. Comb..
[156] J. J. Sylvester,et al. On a Point in the Theory of Vulgar Fractions , 1880 .
[157] Prudence W. H. Wong,et al. On Dynamic Bin Packing: An Improved Lower Bound and Resource Augmentation Analysis , 2008, Algorithmica.
[158] Gregory Gutin,et al. On-line bin Packing with Two Item Sizes , 2006, Algorithmic Oper. Res..
[159] Andrew Chi-Chih Yao,et al. New Algorithms for Bin Packing , 1978, JACM.
[160] Prudence W. H. Wong,et al. Dynamic bin packing of unit fractions items , 2008, Theor. Comput. Sci..
[161] Dorit S. Hochbaum,et al. Approximation Algorithms for NP-Hard Problems , 1996 .
[162] Joseph Y.-T. Leung,et al. On a Dual Version of the One-Dimensional Bin Packing Problem , 1984, J. Algorithms.
[163] Hadas Shachnai,et al. Fast Asymptotic FPTAS for Packing Fragmentable Items with Costs , 2007, FCT.
[164] Sungsoo Park,et al. Algorithms for the variable sized bin packing problem , 2003, Eur. J. Oper. Res..
[165] R. Péter. Mathematische Fassung der sogenannten "Entscheidungs-Tabellen" , 1973, Acta Cybern..
[166] Michael A. Langston,et al. Analysis of a Compound bin Packing Algorithm , 1991, SIAM J. Discret. Math..
[167] M. Yue. On the exact upper bound for the multifit processor scheduling algorithm , 1990 .