Optical antennas as nanoscale resonators.

Recent progress in nanotechnology has enabled us to fabricate sub-wavelength architectures that function as antennas for improving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing quantum emitters and review the designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter interactions, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to state-of-the-art microcavities.

[1]  B. Persson Theory of the damping of excited molecules located above a metal surface , 1978 .

[2]  Achim Hartschuh,et al.  Tip-enhanced near-field optical microscopy. , 2008, Angewandte Chemie.

[3]  Sebastian Mackowski,et al.  Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. , 2008, Nano letters.

[4]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[5]  V. Sandoghdar,et al.  Spheroidal nanoparticles as nanoantennas for fluorescence enhancement , 2009 .

[6]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[7]  A. Hanks Canada , 2002 .

[8]  A. Nitzan,et al.  Theoretical model for enhanced photochemistry on rough surfaces , 1981 .

[9]  G. Nienhuis,et al.  Quantized mode of a leaky cavity , 2000 .

[10]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[11]  U. Kreibig,et al.  Interface-induced dephasing of Mie plasmon polaritons , 2008 .

[12]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[13]  N J Halas,et al.  Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. , 2005, Nano letters.

[14]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[15]  Vahid Sandoghdar,et al.  Finite-difference time-domain modeling of decay rates in the near field of metal nanostructures , 2007 .

[16]  Xue-Wen Chen,et al.  Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field. , 2010, Optics express.

[17]  Nicolas Bonod,et al.  Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission. , 2010, ACS nano.

[18]  J. Peřina Coherence and statistics of photons and atoms , 2001 .

[19]  T. Elsaesser,et al.  Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. , 2002, Physical review letters.

[20]  James Pond,et al.  Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules. , 2009, Analytical chemistry.

[21]  Mario Agio,et al.  Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams. , 2008, Optics express.

[22]  Rosalba Saija,et al.  Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. , 2010, ACS nano.

[23]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[24]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[25]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[26]  Klaus Müllen,et al.  Visualizing and controlling vibrational wave packets of single molecules , 2010, Nature.

[27]  Plasmonic resonators for enhanced diamond NV-center single photon sources. , 2011, Optics express.

[28]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[29]  P. K. Aravind,et al.  The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres , 1981 .

[30]  Domenico Pacifici,et al.  Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters. , 2005, Nano letters.

[31]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[32]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[33]  Joseph R Lakowicz,et al.  Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. , 2005, Analytical biochemistry.

[34]  Ahmad Mohammadi,et al.  Gold nanorods and nanospheroids for enhancing spontaneous emission , 2008 .

[35]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[36]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[37]  G. V. Chester,et al.  Solid State Physics , 2000 .

[38]  Daniel E. Prober,et al.  Optical antenna: Towards a unity efficiency near-field optical probe , 1997 .

[39]  M. Nomura A photonic crystal nanocavity laser with ultralow threshold , 2007 .

[40]  F. G. D. Abajo,et al.  Spontaneous light emission in complex nanostructures , 2004 .

[41]  J. Lakowicz,et al.  Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. , 2007, Analytical chemistry.

[42]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[43]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[44]  C. Balanis Antenna theory , 1982 .

[45]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[46]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[47]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[48]  H. Solak,et al.  Plasmon resonances of aluminum nanoparticles and nanorods , 2008 .

[49]  R. Ruppin,et al.  Decay of an excited molecule near a small metal sphere , 1982 .

[50]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[51]  Ahmad Mohammadi,et al.  Gold, Copper, Silver and Aluminum Nanoantennas to Enhance Spontaneous Emission , 2008, 0807.4082.

[52]  V. Sandoghdar,et al.  Modification of single molecule fluorescence close to a nanostructure: radiation pattern, spontaneous emission and quenching , 2007, 0710.4092.

[53]  Reginald K. Lee,et al.  Quantum analysis and the classical analysis of spontaneous emission in a microcavity , 2000 .

[54]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[55]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[56]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[57]  Electric field enhancement by a nanometer-scaled conical metal tip in the context of scattering-type near-field optical microscopy , 2006 .

[58]  Hung-Chih Chang,et al.  Electric near-field enhancing properties of a finite-size metal conical nano-tip. , 2007, Ultramicroscopy.

[59]  V. Letokhov,et al.  Spontaneous emission of an atom placed near a prolate nanospheroid , 2002 .

[60]  R. Hansen,et al.  Fundamental limitations in antennas , 1981, Proceedings of the IEEE.

[61]  J. Mclean A re-examination of the fundamental limits on the radiation Q of electrically small antennas , 1996 .

[62]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[63]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[64]  Alessandro Salandrino,et al.  Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain , 2007 .

[65]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[66]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[67]  Darius Abramavicius,et al.  Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. , 2009, Chemical reviews.

[68]  S. Mahdavi,et al.  Size, composition and optical properties of copper nanoparticles prepared by laser ablation in liquids , 2007 .

[69]  Daniel Kleppner,et al.  Cavity quantum electrodynamics , 1986 .

[70]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[71]  Jean-Jacques Greffet,et al.  Impedance of a nanoantenna and a single quantum emitter. , 2010, Physical review letters.

[72]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[73]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[74]  Xue-Wen Chen,et al.  Resolution and enhancement in nanoantenna-based fluorescence microscopy. , 2009, Nano letters.

[75]  Dapeng Yu,et al.  Vertical plasmonic resonant nanocavities. , 2011, Nano letters.

[76]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[77]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[78]  Leung Decay of molecules at spherical surfaces: Nonlocal effects. , 1990, Physical review. B, Condensed matter.

[79]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[80]  Igor Zorić,et al.  Localized surface plasmon resonances in aluminum nanodisks. , 2008, Nano letters.

[81]  M. Orrit,et al.  Single-photon sources , 2005 .

[82]  J. Sipe,et al.  Quantum electrodynamics near an interface , 1984 .

[83]  R. Walters,et al.  Enhanced spontaneous emission rate in annular plasmonic nanocavities , 2009 .

[84]  Metal-coated nanocylinder cavity for broadband nonclassical light emission. , 2010, Physical review letters.

[85]  Richard K. Chang,et al.  Surface-enhanced electric intensities on transition- and noble-metal spheroids , 1986 .

[86]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[87]  Jean-Jacques Greffet,et al.  Nanoantennas for Light Emission , 2005, Science.

[88]  B. Hecht,et al.  Near-field optics seen as an antenna problem , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[89]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[90]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[91]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[92]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[93]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[94]  G. Schatz,et al.  Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles , 2008 .

[95]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[96]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[97]  A. Polman,et al.  Ultrasmall mode volume plasmonic nanodisk resonators. , 2010, Nano letters (Print).

[98]  P. Barber Absorption and scattering of light by small particles , 1984 .

[99]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[100]  Fernando D Stefani,et al.  Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna. , 2008, Optics express.

[101]  S. Phoenix Elements of Quantum Optics , 1991 .

[102]  R. R. Ernst,et al.  Energy transfer in surface enhanced luminescence , 1983 .

[103]  Holger F. Hofmann,et al.  Design parameters for a nano-optical Yagi–Uda antenna , 2007, cond-mat/0703595.

[104]  R. Hildner,et al.  Femtosecond coherence and quantum control of single molecules at room temperature , 2010, 1012.2366.

[105]  R. Saija,et al.  Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics. , 2010, Physical review letters.

[106]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[107]  Andrea Alù,et al.  Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.

[108]  Picosecond photoluminescence decay of Si-doped chemical-vapor-deposited diamond films. , 1996, Physical review. B, Condensed matter.

[109]  H. Metiu Surface enhanced spectroscopy , 1984 .

[110]  Mikael Käll,et al.  Intrinsic Fano interference of localized plasmons in Pd nanoparticles. , 2009, Nano letters.

[111]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[112]  V. Sandoghdar,et al.  Fluorescence enhancement with the optical (bi-) conical antenna , 2010, 1002.4643.

[113]  X. Xie,et al.  Near-field fluorescence microscopy based on two-photon excitation with metal tips , 1999 .

[114]  Ulrich Hohenester,et al.  Strong coupling between a metallic nanoparticle and a single molecule , 2008, 0802.1630.

[115]  Xing Zhu,et al.  Near-Field Optics: Principles and Applications , 2000 .

[116]  Xue-Wen Chen,et al.  Highly efficient interfacing of guided plasmons and photons in nanowires. , 2009, Nano letters.

[117]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[118]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[119]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[120]  L. Novotný,et al.  Antennas for light , 2011 .

[121]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[122]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[123]  Oliver Benson,et al.  Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling. , 2010, Nano letters.

[124]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[125]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[126]  Nassiredin M. Mojarad,et al.  Plasmon spectra of nanospheres under a tightly focused beam , 2007, 0711.3649.

[127]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[128]  Alain Dereux,et al.  Near-field optics theories , 1996 .

[129]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[130]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[131]  A. Koenderink On the use of Purcell factors for plasmon antennas. , 2010, Optics letters.

[132]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[133]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[134]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .