An algorithm for the optimum distribution of a regional seismic network—I

SummaryAn algorithm for the optimum distribution of any number of regional seismic stations is formulated. The information needed from a given region is the relative distribution of seismic intensity and the travel times of seismic waves used in earthquake location procedure. To define the optimum distribution of a regional network, some generalization of D-planning (minimization of the ellipsoid volume of earthquake location errors) was applied. The D-optimum criterion is generalized for a case where equations describing the process are nonlinear and when the most probable values of the sought parameters (origin time and earthquake focus coordinates) are not known.As an example of the algorithm application, the optimum distribution of seismic stations in the central district of the Lublin Coal Basin in Poland is given.

[1]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations: multiresponse case. , 1967, Biometrika.

[2]  R. C. Lilwall,et al.  Estimation of P-wave Travel Times using the Joint Epicentre Method , 1970 .

[3]  K. Veith Refined hypocenters and accurate reliability estimates , 1975, Bulletin of the Seismological Society of America.

[4]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[5]  C. Atwood Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .

[6]  A. DOUGLAS,et al.  Joint Epicentre Determination , 1967, Nature.

[7]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[8]  E. A. Flinn,et al.  Confidence regions and error determinations for seismic event location , 1965 .

[9]  Yasuo Sato,et al.  30. Optimum Distribution of Seismic Observation Points. II , 1965 .

[10]  A. Wald On the Efficient Design of Statistical Investigations , 1943 .

[11]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[12]  R. C. Lilwall,et al.  Methods of Estimating Travel Times and Epicentres , 1972 .

[13]  M. J. Box,et al.  Factorial Designs, the |X′X| Criterion, and Some Related Matters , 1971 .

[14]  W. G. Hunter,et al.  The use of prior distributions in the design of experiments for parameter estimation in non-linear situations. , 1967, Biometrika.

[15]  J. Kiefer Optimum Experimental Designs , 1959 .

[16]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[17]  W. J. Hill,et al.  Design of Experiments for Subsets of Parameters , 1974 .

[18]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[19]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[20]  O. Dykstra The Augmentation of Experimental Data to Maximize [X′X] , 1971 .

[21]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[22]  R. C. St. John,et al.  D-Optimality for Regression Designs: A Review , 1975 .

[23]  Anthony C. Atkinson,et al.  The Design of Experiments for Parameter Estimation , 1968 .

[24]  H. L. Lucas,et al.  DESIGN OF EXPERIMENTS IN NON-LINEAR SITUATIONS , 1959 .