Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and contr
暂无分享,去创建一个
[1] Richard H. Sibson,et al. Earthquake rupturing as a mineralizing agent in hydrothermal systems , 1987 .
[2] N. Hinman,et al. Seasonal changes in silica deposition in hot spring systems , 1996 .
[3] M. Garcia‐Valles,et al. The hot spring and geyser sinters of El Tatio, Northern Chile , 2005 .
[4] S. Kelley,et al. Episodic Silicic Volcanism in Patagonia and the Antarctic Peninsula: Chronology of Magmatism Associated with the Break-up of Gondwana , 2000 .
[5] P. Sruoga,et al. The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province , 1998 .
[6] D. Guido,et al. La Formación Bajo Pobre (Jurásico) en el este del Macizo del Deseado, Patagonia: vinculación con el Grupo Bahía Laura , 2006 .
[7] K. Campbell,et al. Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina , 2010, Journal of the Geological Society.
[8] K. Campbell,et al. Late Pleistocene siliceous sinter associated with fluvial, lacustrine, volcaniclastic and landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand , 2003, Transactions of the Royal Society of Edinburgh: Earth Sciences.
[9] F. Stuart,et al. A Devonian auriferous hot spring system, Rhynie, Scotland , 1995, Journal of the Geological Society.
[10] Richard H. Sibson,et al. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand , 2004 .
[11] B. Jones,et al. Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes, Bolivia , 1994 .
[12] M. Keywood,et al. Irreversible change of the Rotomahana-Waimangu hydrothermal system (New Zealand) as a consequence of a volcanic eruption , 1993 .
[13] G. Féraud,et al. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction , 1999 .
[14] M. C. Lee,et al. Epithermal sinters of Paleozoic age in north Queensland, Australia , 1989 .
[15] K. Cook,et al. Silica phases in sinters and residues from geothermal fields of New Zealand , 2004 .
[16] D. D. Marais,et al. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). , 2001, Journal of sedimentary research. Section A, Sedimentary petrology and processes : an international journal of SEPM.
[17] B. Jones,et al. Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley , 2002 .
[18] Michael R. Rosen,et al. Microbial Biofacies in Hot-Spring Sinters: A Model Based on Ohaaki Pool, North Island, New Zealand , 1998 .
[19] R. Pankhurst,et al. Origins of Large Volume Rhyolitic Volcanism in the Antarctic Peninsula and Patagonia by Crustal Melting , 2001 .
[20] K. Campbell,et al. Sedimentary Facies and Mineralogy of the Late Pleistocene Umukuri Silica Sinter, Taupo Volcanic Zone, New Zealand , 2001 .
[21] J. Underhill,et al. Controls on the structural architecture and sedimentary character of syn-rift sequences, North Falkland Basin, South Atlantic , 2002 .
[22] Jack D. Farmer,et al. Biological versus inorganic processes in stromatolite morphogenesis: Observations from mineralizing sedimentary systems , 1994 .
[23] J. Farmer. Hydrothermal systems: Doorways to early biosphere evolution , 2000 .
[24] D. Edwards,et al. A geothermally influenced wetland containing unconsolidated geochemical sediments , 2004 .
[25] E. Lloyd. Geology and hot springs of Orakeikorako , 1972 .
[26] D J Des Marais,et al. Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.
[27] B. Jones,et al. Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile , 1997 .
[28] K. Campbell,et al. Microfacies of stromatolitic sinter from acid-sulphate-chloride springs at Parakiri Stream, Rotokawa geothermal field, New Zealand , 2007 .
[29] J. Seckbach,et al. Stromatolites : Interaction of Microbes with Sediments , 2011 .
[30] Horacio Echeveste. TRAVERTINOS Y JASPEROIDES DE MANANTIAL ESPEJO, UN AMBIENTE HOT SPRING JURASICO. MACIZO DEL DESEADO, PROVINCIA DE SANTA CRUZ, ARGENTINA , 2005 .
[31] Donald E. White,et al. Global distribution of carbon dioxide discharges, and major zones of seismicity , 1978 .
[32] Thomas D. Brock,et al. Chapter 6.2 Microbiology and Morphogenesis of Columnar Stromatolites (Conophyton, Vacerrilla) from Hot Springs in Yellowstone National Park , 1976 .
[33] B. Jones,et al. Primary silica oncoids from Orakeikorako Hot Springs, North Island, New Zealand , 1996 .
[34] J. Farmer,et al. Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.
[35] B. Jones,et al. Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand , 2005 .
[36] K. Campbell,et al. Jurassic hot-spring activity in a fluvial setting at La Marciana, Patagonia, Argentina , 2009, Geological Magazine.
[37] H. Chafetz,et al. Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system , 1991 .
[38] R. Folk,et al. Travertines: Depositional Morphology and the Bacterially Constructed Constituents , 1984 .
[39] H. Barnes,et al. Geochemistry of Hydrothermal Ore Deposits , 1968 .
[40] A. Sáez,et al. Igneous Origin of CO2 in Ancient and Recent Hot-Spring Waters and Travertines from the Northern Argentinean Andes , 2009 .
[41] R. Riding. The term stromatolite: towards an essential definition , 2007 .
[42] R. Giacosa,et al. Meso-Cenozoic tectonics of the southern Patagonian foreland: Structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina) , 2010 .
[43] D. Yuan,et al. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China , 2004 .
[44] H. Stein,et al. New Mexico structural zone—an analogue of the Colorado mineral belt , 2002 .
[45] R. E. Buchanan,et al. Bergey's Manual of Determinative Bacteriology. , 1975 .
[46] C. D. de Ronde,et al. Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand , 2007, Journal of the Geological Society.
[47] Robert L. Christiansen,et al. Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G) , 2011 .
[48] D. Edwards,et al. Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: anatomy, paleoecology, and inferred paleoecophysiology. , 2011, American journal of botany.
[49] N. H. Gray,et al. A Mesozoic Carbonate Hot-Spring Deposit in the Hartford Basin of Connecticut , 1987 .
[50] R. Riding,et al. Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy , 1992 .
[51] A. Channing,et al. A new Middle–Late Jurassic flora and hot spring chert deposit from the Deseado Massif, Santa Cruz province, Argentina , 2007, Geological Magazine.
[52] R. Fernández,et al. Jurassic epithermal Au–Ag deposits of Patagonia, Argentina , 1997 .
[53] K. Campbell,et al. Character, Analysis, and Preservation of Biogenicity in Terrestrial Siliceous Stromatolites from Geothermal Settings , 2011 .
[54] T. D. Brock. Thermophilic Microorganisms and Life at High Temperatures , 1978, Springer Series in Microbiology.
[55] J. Argent,et al. Mega-pockmarks and linear pockmark trains on the west african continental margin , 2007 .
[56] Michael McWilliams,et al. Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review , 1995 .
[57] D. Lowe,et al. Relationship between Spring and Geyser Activity and the Deposition and Morphology of High Temperature (> 73°C) Siliceous Sinter, Yellowstone National Park, Wyoming, U.S.A. , 2001 .
[58] R. Sillitoe,et al. Paleozoic hot spring sinter in the Drummond Basin, Queensland, Australia , 1989 .
[59] Todd G. Caldwell,et al. Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation , 1995 .