Jurassic hot spring deposits of the Deseado Massif (Patagonia, Argentina): Characteristics and contr

Abstract The Deseado Massif, Santa Cruz Province, Argentinean Patagonia, hosts numerous Middle to Late Jurassic age geothermal and epithermal features represented by siliceous and calcareous chemical precipitates from hot springs (sinters and travertines, respectively), hydrothermal breccias, quartz veins, and widespread hydrothermal silicification. They indicate pauses in explosive volcanic activity, marking the final stages in the evolution of an extensive Jurassic (ca. 178–151 Ma) volcanic complex set in a diffuse extensional back-arc setting heralding the opening of the Atlantic Ocean. Published paleo-hot spring sites for the Deseado Massif, plus additional sites identified during our recent field studies, reveal a total of 23 locations, five of which were studied in detail to determine their geologic and facies associations. They show structural, lithologic, textural and biotic similarities with Miocene to Recent hot spring systems from the Taupo and Coromandel volcanic zones, New Zealand, as well as with modern examples from Yellowstone National Park, U.S.A. These comparisons aid in the definition of facies assemblages for Deseado Massif deposits – proximal, middle apron and distal siliceous sinter and travertine terraces and mounds, with preservation of many types of stromatolitic fabrics – that likely were controlled by formation temperature, pH, hydrodynamics and fluid compositions. Locally the mapped hot spring deposits largely occur in association with reworked volcaniclastic lacustrine and/or fluvial sediments, silicic to intermediate lava domes, and hydrothermal mineralization, all of which are related to local and regional structural lineaments. Moreover, the numerous geothermal and significant epithermal (those with published minable resources) deposits of the Deseado Massif geological province mostly occur in four regional NNW and WNW hydrothermal–structural belts (Northwestern, Northern, Central, and Southern), defined here by alignment of five or more hot spring deposits and confirmed as structurally controlled by aeromagnetic data. The Northern and Northwestern belts, in particular, concentrate most of the geothermal and epithermal occurrences. Hence, Jurassic hydrothermal fluid flow was strongly influenced by the most dominant and long-active geological boundaries in the region, the outer limits of the Deseado Massif ‘horst’ itself.

[1]  Richard H. Sibson,et al.  Earthquake rupturing as a mineralizing agent in hydrothermal systems , 1987 .

[2]  N. Hinman,et al.  Seasonal changes in silica deposition in hot spring systems , 1996 .

[3]  M. Garcia‐Valles,et al.  The hot spring and geyser sinters of El Tatio, Northern Chile , 2005 .

[4]  S. Kelley,et al.  Episodic Silicic Volcanism in Patagonia and the Antarctic Peninsula: Chronology of Magmatism Associated with the Break-up of Gondwana , 2000 .

[5]  P. Sruoga,et al.  The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province , 1998 .

[6]  D. Guido,et al.  La Formación Bajo Pobre (Jurásico) en el este del Macizo del Deseado, Patagonia: vinculación con el Grupo Bahía Laura , 2006 .

[7]  K. Campbell,et al.  Jurassic geothermal landscapes and fossil ecosystems at San Agustín, Patagonia, Argentina , 2010, Journal of the Geological Society.

[8]  K. Campbell,et al.  Late Pleistocene siliceous sinter associated with fluvial, lacustrine, volcaniclastic and landslide deposits at Tahunaatara, Taupo Volcanic Zone, New Zealand , 2003, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[9]  F. Stuart,et al.  A Devonian auriferous hot spring system, Rhynie, Scotland , 1995, Journal of the Geological Society.

[10]  Richard H. Sibson,et al.  Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand , 2004 .

[11]  B. Jones,et al.  Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes, Bolivia , 1994 .

[12]  M. Keywood,et al.  Irreversible change of the Rotomahana-Waimangu hydrothermal system (New Zealand) as a consequence of a volcanic eruption , 1993 .

[13]  G. Féraud,et al.  40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction , 1999 .

[14]  M. C. Lee,et al.  Epithermal sinters of Paleozoic age in north Queensland, Australia , 1989 .

[15]  K. Cook,et al.  Silica phases in sinters and residues from geothermal fields of New Zealand , 2004 .

[16]  D. D. Marais,et al.  Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). , 2001, Journal of sedimentary research. Section A, Sedimentary petrology and processes : an international journal of SEPM.

[17]  B. Jones,et al.  Sublacustrine precipitation of hydrothermal silica in rift lakes: evidence from Lake Baringo, central Kenya Rift Valley , 2002 .

[18]  Michael R. Rosen,et al.  Microbial Biofacies in Hot-Spring Sinters: A Model Based on Ohaaki Pool, North Island, New Zealand , 1998 .

[19]  R. Pankhurst,et al.  Origins of Large Volume Rhyolitic Volcanism in the Antarctic Peninsula and Patagonia by Crustal Melting , 2001 .

[20]  K. Campbell,et al.  Sedimentary Facies and Mineralogy of the Late Pleistocene Umukuri Silica Sinter, Taupo Volcanic Zone, New Zealand , 2001 .

[21]  J. Underhill,et al.  Controls on the structural architecture and sedimentary character of syn-rift sequences, North Falkland Basin, South Atlantic , 2002 .

[22]  Jack D. Farmer,et al.  Biological versus inorganic processes in stromatolite morphogenesis: Observations from mineralizing sedimentary systems , 1994 .

[23]  J. Farmer Hydrothermal systems: Doorways to early biosphere evolution , 2000 .

[24]  D. Edwards,et al.  A geothermally influenced wetland containing unconsolidated geochemical sediments , 2004 .

[25]  E. Lloyd Geology and hot springs of Orakeikorako , 1972 .

[26]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[27]  B. Jones,et al.  Formation of silica oncoids around geysers and hot springs at El Tatio, northern Chile , 1997 .

[28]  K. Campbell,et al.  Microfacies of stromatolitic sinter from acid-sulphate-chloride springs at Parakiri Stream, Rotokawa geothermal field, New Zealand , 2007 .

[29]  J. Seckbach,et al.  Stromatolites : Interaction of Microbes with Sediments , 2011 .

[30]  Horacio Echeveste TRAVERTINOS Y JASPEROIDES DE MANANTIAL ESPEJO, UN AMBIENTE HOT SPRING JURASICO. MACIZO DEL DESEADO, PROVINCIA DE SANTA CRUZ, ARGENTINA , 2005 .

[31]  Donald E. White,et al.  Global distribution of carbon dioxide discharges, and major zones of seismicity , 1978 .

[32]  Thomas D. Brock,et al.  Chapter 6.2 Microbiology and Morphogenesis of Columnar Stromatolites (Conophyton, Vacerrilla) from Hot Springs in Yellowstone National Park , 1976 .

[33]  B. Jones,et al.  Primary silica oncoids from Orakeikorako Hot Springs, North Island, New Zealand , 1996 .

[34]  J. Farmer,et al.  Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. , 1996, Ciba Foundation symposium.

[35]  B. Jones,et al.  Genesis of large siliceous stromatolites at Frying Pan Lake, Waimangu geothermal field, North Island, New Zealand , 2005 .

[36]  K. Campbell,et al.  Jurassic hot-spring activity in a fluvial setting at La Marciana, Patagonia, Argentina , 2009, Geological Magazine.

[37]  H. Chafetz,et al.  Microenvironmental controls on mineralogy and habit of CaCO3 precipitates: an example from an active travertine system , 1991 .

[38]  R. Folk,et al.  Travertines: Depositional Morphology and the Bacterially Constructed Constituents , 1984 .

[39]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .

[40]  A. Sáez,et al.  Igneous Origin of CO2 in Ancient and Recent Hot-Spring Waters and Travertines from the Northern Argentinean Andes , 2009 .

[41]  R. Riding The term stromatolite: towards an essential definition , 2007 .

[42]  R. Giacosa,et al.  Meso-Cenozoic tectonics of the southern Patagonian foreland: Structural evolution and implications for Au–Ag veins in the eastern Deseado Region (Santa Cruz, Argentina) , 2010 .

[43]  D. Yuan,et al.  Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China , 2004 .

[44]  H. Stein,et al.  New Mexico structural zone—an analogue of the Colorado mineral belt , 2002 .

[45]  R. E. Buchanan,et al.  Bergey's Manual of Determinative Bacteriology. , 1975 .

[46]  C. D. de Ronde,et al.  Siliceous sublacustrine spring deposits around hydrothermal vents in Lake Taupo, New Zealand , 2007, Journal of the Geological Society.

[47]  Robert L. Christiansen,et al.  Database for the Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana (Database for Professional Paper 729-G) , 2011 .

[48]  D. Edwards,et al.  Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: anatomy, paleoecology, and inferred paleoecophysiology. , 2011, American journal of botany.

[49]  N. H. Gray,et al.  A Mesozoic Carbonate Hot-Spring Deposit in the Hartford Basin of Connecticut , 1987 .

[50]  R. Riding,et al.  Aragonite laminae in hot water travertine crusts, Rapolano Terme, Italy , 1992 .

[51]  A. Channing,et al.  A new Middle–Late Jurassic flora and hot spring chert deposit from the Deseado Massif, Santa Cruz province, Argentina , 2007, Geological Magazine.

[52]  R. Fernández,et al.  Jurassic epithermal Au–Ag deposits of Patagonia, Argentina , 1997 .

[53]  K. Campbell,et al.  Character, Analysis, and Preservation of Biogenicity in Terrestrial Siliceous Stromatolites from Geothermal Settings , 2011 .

[54]  T. D. Brock Thermophilic Microorganisms and Life at High Temperatures , 1978, Springer Series in Microbiology.

[55]  J. Argent,et al.  Mega-pockmarks and linear pockmark trains on the west african continental margin , 2007 .

[56]  Michael McWilliams,et al.  Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review , 1995 .

[57]  D. Lowe,et al.  Relationship between Spring and Geyser Activity and the Deposition and Morphology of High Temperature (> 73°C) Siliceous Sinter, Yellowstone National Park, Wyoming, U.S.A. , 2001 .

[58]  R. Sillitoe,et al.  Paleozoic hot spring sinter in the Drummond Basin, Queensland, Australia , 1989 .

[59]  Todd G. Caldwell,et al.  Geophysical evidence on the structure of the Taupo Volcanic Zone and its hydrothermal circulation , 1995 .