Paraconsistent Computation Tree Logic

It is known that paraconsistent logical systems are more appropriate for inconsistency-tolerant and uncertainty reasoning than other types of logical systems. In this paper, a paraconsistent computation tree logic, PCTL, is obtained by adding paraconsistent negation to the standard computation tree logic CTL. PCTL can be used to appropriately formalize inconsistency-tolerant temporal reasoning. A theorem for embedding PCTL into CTL is proved. The validity, satisfiability, and model-checking problems of PCTL are shown to be decidable. The embedding and decidability results indicate that we can reuse the existing CTL-based algorithms for validity, satisfiability, and model-checking. An illustrative example of medical reasoning involving the use of PCTL is presented.

[1]  Newton C. A. da Costa,et al.  Aspects of Paraconsistent Logic , 1995, Log. J. IGPL.

[2]  Norihiro Kamide,et al.  A Uniform Proof-theoretic Foundation for Abstract Paraconsistent Logic Programming , 2007, J. Funct. Log. Program..

[3]  Heinrich Wansing,et al.  Combining linear-time temporal logic with constructiveness and paraconsistency , 2010, J. Appl. Log..

[4]  Wolfgang Rautenberg,et al.  Klassische und nichtklassische Aussagenlogik , 1979 .

[5]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[6]  Heinrich Wansing,et al.  Inconsistency-tolerant Description Logic: Motivation and Basic Systems , 2003 .

[7]  Marsha Chechik,et al.  CTL model-checking over logics with non-classical negations , 2003, 33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings..

[8]  Ken Satoh,et al.  On the complexities of consistency checking for restricted UML class diagrams , 2010, Theor. Comput. Sci..

[9]  V. S. Subrahmanian,et al.  A Petri Net Model for Reasoning in the Presence of Inconsistency , 1991, IEEE Trans. Knowl. Data Eng..

[10]  Marsha Chechik,et al.  A framework for multi-valued reasoning over inconsistent viewpoints , 2001, Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001.

[11]  Gerd Wagner,et al.  Logic Programming with Strong Negation and Inexact Predicates , 1991, J. Log. Comput..

[12]  Ken Kaneiwa,et al.  Order-sorted logic programming with predicate hierarchy , 2004, Artif. Intell..

[13]  Marsha Chechik,et al.  Yasm: A Software Model-Checker for Verification and Refutation , 2006, CAV.

[14]  Norihiro Kamide,et al.  Linear and affine logics with temporal, spatial and epistemic operators , 2006, Theor. Comput. Sci..

[15]  Jinzhao Wu,et al.  Reasoning About Inconsistent Concurrent Systems: A Non-classical Temporal Logic , 2006, SOFSEM.

[16]  Ken Kaneiwa,et al.  Paraconsistent Negation and Classical Negation in Computation Tree Logic , 2010, ICAART.

[17]  Helmut Veith,et al.  Counterexample-guided abstraction refinement for symbolic model checking , 2003, JACM.

[18]  Yuri Gurevich,et al.  Intuitionistic logic with strong negation , 1977 .

[19]  Heinrich Wansing,et al.  The Logic of Information Structures , 1993, Lecture Notes in Computer Science.

[20]  Richard Routley,et al.  Introduction: Paraconsistent logics , 1984 .

[21]  Ken Kaneiwa,et al.  Description Logics with Contraries, Contradictories, and Subcontraries , 2007, New Generation Computing.

[22]  N. Kamide Extended full computation-tree logics for paraconsistent model checking , 2007 .

[23]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[24]  David Nelson,et al.  Constructible falsity and inexact predicates , 1984, Journal of Symbolic Logic.

[25]  Marsha Chechik,et al.  Why Waste a Perfectly Good Abstraction? , 2006, TACAS.

[26]  David Nelson,et al.  Constructible falsity , 1949, Journal of Symbolic Logic.