Iterative Algorithms for Assessing Network Resilience Against Structured Perturbations

This paper studies network resilience against structured additive perturbations to its topology. We consider dynamic networks modeled as linear time-invariant systems subject to perturbations of bounded energy satisfying specific sparsity and entry-wise constraints. Given an energy level, the structured pseudospectral abscissa captures the worst-possible perturbation an adversary could employ to de-stabilize the network, and the structured stability radius is the maximum energy in the structured perturbation that the network can withstand without becoming unstable. Building on a novel characterization of the worst-case structured perturbation, we propose iterative algorithms that efficiently compute the structured pseudospectral abscissa and structured stability radius. We provide theoretical guarantees of the local convergence of the algorithms and illustrate their efficacy and accuracy on several network examples.

[1]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[2]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[3]  Paulo Tabuada,et al.  Secure Estimation and Control for Cyber-Physical Systems Under Adversarial Attacks , 2012, IEEE Transactions on Automatic Control.

[4]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[5]  Nicola Guglielmi,et al.  Computing the Structured Pseudospectrum of a Toeplitz Matrix and Its Extreme Points , 2012, SIAM J. Matrix Anal. Appl..

[6]  Daniel Kressner,et al.  On the computation of structured singular values and pseudospectra , 2010, Syst. Control. Lett..

[7]  Ding Lu,et al.  Criss-Cross Type Algorithms for Computing the Real Pseudospectral Abscissa , 2017, SIAM J. Matrix Anal. Appl..

[8]  Fabio Pasqualetti,et al.  On the Real Stability Radius of Sparse Systems , 2018, Autom..

[9]  Florian Dörfler,et al.  Attack Detection and Identification in Cyber-Physical Systems -- Part II: Centralized and Distributed Monitor Design , 2012, ArXiv.

[10]  Claire J. Tomlin,et al.  Secure State Estimation and Control for Cyber Security of the Nonlinear Power Systems , 2018, IEEE Transactions on Control of Network Systems.

[11]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[12]  Minghao W. Rostami New Algorithms for Computing the Real Structured Pseudospectral Abscissa and the Real Stability Radius of Large and Sparse Matrices , 2015, SIAM J. Sci. Comput..

[13]  Antonio Bicchi,et al.  Consensus Computation in Unreliable Networks: A System Theoretic Approach , 2010, IEEE Transactions on Automatic Control.

[14]  Nicola Guglielmi,et al.  On the Method by Rostami for Computing the Real Stability Radius of Large and Sparse Matrices , 2016, SIAM J. Sci. Comput..

[15]  Svatopluk Poljak,et al.  Checking robust nonsingularity is NP-hard , 1993, Math. Control. Signals Syst..

[16]  Richard F. Barrett,et al.  Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.

[17]  D. Hinrichsen,et al.  Stability radii of linear systems , 1986 .

[18]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[19]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[20]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[21]  C. D. Meyer,et al.  Derivatives and perturbations of eigenvectors , 1988 .

[22]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[23]  Yehuda Lindell,et al.  Introduction to Modern Cryptography , 2004 .

[24]  Munther A. Dahleh,et al.  Asymptotic Network Robustness , 2017, IEEE Transactions on Control of Network Systems.

[25]  S. Rump EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .

[26]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[27]  Shreyas Sundaram,et al.  Distributed Function Calculation via Linear Iterative Strategies in the Presence of Malicious Agents , 2011, IEEE Transactions on Automatic Control.

[28]  Sonia Martínez,et al.  On the Performance Analysis of Resilient Networked Control Systems Under Replay Attacks , 2013, IEEE Transactions on Automatic Control.

[29]  Shreyas Sundaram,et al.  A Notion of Robustness in Complex Networks , 2015, IEEE Transactions on Control of Network Systems.

[30]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[31]  Nicola Guglielmi,et al.  Low-Rank Dynamics for Computing Extremal Points of Real Pseudospectra , 2013, SIAM J. Matrix Anal. Appl..