Supply chain optimization with variable demand by considering financial criteria and scenarios

This paper contemplates the supply chain design problem of a large-scale company by considering the maximization of the Net Present Value. In particular, the variability of the demand for each type of product at each customer zone has been estimated. As starting point, this paper considers an established supply chain for which the main problem is to determine the decisions regarding expansion of distribution centers. The problem is solved by using a mixed-integer linear programming model, which optimizes the different demand scenarios. The proposed methodology uses a scheme of optimization based on the generation of multiple demand scenarios of the supply network. The model is based on a real case taken from a multinational food company, which supplies to the Colombian and some international markets. The obtained results were compared with the equivalent present costs minimization scheme of the supply network, and showed the importance and efficiency of the proposed approach as an alternative for the supply chain design with stochastic parameters.

[1]  Alain Martel,et al.  The design of robust value-creating supply chain networks , 2010, Eur. J. Oper. Res..

[2]  Isabela Mafla,et al.  Rediseño de una red de distribución para un grupo de empresas que pertenecen a un holding multinacional considerando variabilidad en la demanda , 2015 .

[3]  Justin Ridlehoover APPLYING MONTE CARLO SIMULATION AND RISK ANALYSIS TO THE FACILITY LOCATION PROBLEM , 2004 .

[4]  Marc Goetschalckx,et al.  Production , Manufacturing and Logistics Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk , 2014 .

[5]  A. Zamboni,et al.  Strategic design and investment capacity planning of the ethanol supply chain under price uncertainty. , 2011 .

[6]  M. Georgiadis,et al.  Integration of financial statement analysis in the optimal design of supply chain networks under demand uncertainty , 2011 .

[7]  Vladimir Marianov,et al.  The P-median problem in a changing network: The case of Barcelona , 1998 .

[8]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[9]  José Pedro García Sabater,et al.  Análisis y definición de Escenarios en programación estocástica para la Gestión de la Cadena de Suministros, en el sector del automóvil. , 2001 .

[10]  Wilson Adarme-Jaimes,et al.  A hybrid metaheuristic algorithm for the capacitated location routing problem , 2015 .

[11]  Alain Martel,et al.  Scenario-based Supply Chain Network risk modeling , 2012, Eur. J. Oper. Res..

[12]  Laureano F. Escudero,et al.  On solving stochastic production planning problems via scenario modelling , 1995 .

[13]  Piyush Singhal,et al.  Supply chain risk management: review, classification and future research directions , 2011 .

[14]  L. Puigjaner,et al.  Multiobjective supply chain design under uncertainty , 2005 .

[15]  Rafael Guillermo García-Cáceres,et al.  Tactical planning of domestic supply chains , 2011 .

[16]  John H. Vanston,et al.  Alternate scenario planning , 1977 .

[17]  C. Pantelides,et al.  Design of Multi-echelon Supply Chain Networks under Demand Uncertainty , 2001 .

[18]  Laureano F. Escudero,et al.  Production planning via scenario modelling , 1993, Ann. Oper. Res..

[19]  T. Comes,et al.  A critical review on supply chain risk – Definition, measure and modeling ☆ , 2015 .

[20]  Hui-Chieh Li,et al.  Reliability evaluation and adjustment of supply chain network design with demand fluctuations , 2011 .

[21]  John Willmer Escobar,et al.  UN ALGORITMO METAHEURÍSTICO BASADO EN RECOCIDO SIMULADO CON ESPACIO DE BÚSQUEDA GRANULAR PARA EL PROBLEMA DE LOCALIZACIÓN Y RUTEO CON RESTRICCIONES DE CAPACIDAD , 2012 .

[22]  R. Bolaños,et al.  A multiobjective non-dominated sorting genetic algorithm (NSGA-II) for the Multiple Traveling Salesman Problem , 2015 .

[23]  Young Hee Lee,et al.  Optimization of a hydrogen supply chain under demand uncertainty , 2008 .