A novel non-central catadioptric auto-calibration approach

Calibration is the determination of coordinates of all pixels' rays in some common coordinate system. It enables to compute a 3D ray, along which light travels, for every image pixel. In this paper we propose a novel non-central catadioptric system auto-calibration approach. It uses polarization imaging to know the specular surface shape in order to estimate the catacaustics of the catadioptric system which geometrically fully describe the imaging system. The catacaustic is a locus of viewpoints. Each pixel in the image maps to a point on the caustic surface on which every point maps to a unique light ray from the scene. Polarization imaging helps to widen the range of catadioptric systems to include all types of specular surfaces. Our novel approach helps to auto-calibrate any combination of specular surfaces and lenses.

[1]  Andrew W. Fitzgibbon,et al.  Simultaneous linear estimation of multiple view geometry and lens distortion , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  D. Burkhard,et al.  Flux density for ray propagation in geometrical optics , 1973 .

[3]  H. Opower Multiple view geometry in computer vision , 2002 .

[4]  Juho Kannala,et al.  A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[6]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Terrance E. Boult,et al.  Constraining Object Features Using a Polarization Reflectance Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Janne Heikkilä,et al.  Geometric Camera Calibration Using Circular Control Points , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  D. Zwillinger,et al.  Standard Mathematical Tables and Formulae , 1997, The Mathematical Gazette.

[10]  Fernando Garcia Maldonado,et al.  Three-dimensional inspection , 2007 .

[11]  Yasushi Yagi,et al.  Obstacle detection with omnidirectional image sensor HyperOmni Vision , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[12]  Tomas Pajdla,et al.  Panoramic cameras for 3D computation , 2000 .

[13]  E. H. Linfoot Principles of Optics , 1961 .

[14]  J. W. Bruce,et al.  On caustics of plane curves , 1981 .

[15]  P. Sturm,et al.  A Generic Calibration Concept : Theory and Algorithms , 2003 .

[16]  P. Sturm,et al.  Theory and Experiments towards Complete Generic Calibration , 2005 .

[17]  João Pedro Barreto,et al.  A unifying geometric representation for central projection systems , 2006, Comput. Vis. Image Underst..

[18]  Katsushi Ikeuchi,et al.  Transparent surface modeling from a pair of polarization images , 2004 .

[19]  Peter F. Sturm,et al.  A Generic Concept for Camera Calibration , 2004, ECCV.

[20]  Stephen J. Maybank,et al.  On plane-based camera calibration: A general algorithm, singularities, applications , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[21]  David Fofi,et al.  Calibration of Catadioptric Sensors by Polarization Imaging , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[22]  Yasushi Yagi,et al.  Omnidirectional Sensing and Its Applications , 1999 .

[23]  Srikumar Ramalingam,et al.  Generic Imaging Models: Calibration and 3D Reconstruction Algorithms. (Modèles de formation d'image génériques : calibrage et algorithmes de reconstruction 3D) , 2006 .

[24]  Jake K. Aggarwal,et al.  Intrinsic parameter calibration procedure for a (high-distortion) fish-eye lens camera with distortion model and accuracy estimation , 1996, Pattern Recognit..

[25]  Tomás Pajdla,et al.  Structure from motion with wide circular field of view cameras , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Shree K. Nayar,et al.  Non-Single Viewpoint Catadioptric Cameras: Geometry and Analysis , 2006, International Journal of Computer Vision.

[27]  Olivier Morel,et al.  Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging. , 2006, Applied optics.

[28]  Kostas Daniilidis,et al.  A Unifying Theory for Central Panoramic Systems and Practical Applications , 2000, ECCV.

[29]  Lawrence B. Wolff,et al.  Polarization-Based Material Classification from Specular Reflection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Shree K. Nayar,et al.  A general imaging model and a method for finding its parameters , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[31]  P. Gorria,et al.  Active Lighting Applied to 3D Reconstruction of Specular Metallic Surfaces by Polarization Imaging , 2010 .